CS 1571 Introduction to AI Lecture 27

Multi-layer neural networks

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Announcements

Homeworks:

• Homework 10 due today

Final exam: December 08, 2003 at 10:00-11:50am

- Location: 5129 Sennott Square
- Closed book
- Cumulative
- Format similar to the midterm exam

Office hours:

- Milos: Tue 2:30-4:00pm, Wed 11:00-12:00am
- Tomas: Wed 2:00-3:30pm, Fri 10:00-11:30am

Linear regression

Logistic regression

$$f(\mathbf{x}) = p(y=1|\mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{n} w_j x_j)$$

$$\sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) = \sum_{j=1}^{n} f(\mathbf{x}) =$$

On-line gradient update:

$$w_0 \leftarrow w_0 + \alpha(y - f(\mathbf{x}))$$

$$w_j \leftarrow w_j + \alpha(y - f(\mathbf{x}))x_j$$

On-line gradient update:

CS 1571 Intro to AI

The same

Limitations of basic linear units

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$$

Logistic regression

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{i=1}^{d} w_i x_i)$$

Function linear in inputs!!

Linear decision boundary!!

Extensions of simple linear units

• use feature (basis) functions to model nonlinearities

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x})$$

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x})$$

$$Logistic regression$$

$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}))$$

 $\phi_j(\mathbf{x})$ - an arbitrary function of \mathbf{x}

CS 1571 Intro to AI

Regression with the quadratic model.

Limitation: linear hyper-plane only a non-linear surface can be better

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)

CS 1571 Intro to AI

Linear decision boundary

• logistic regression model is not optimal, but not that bad

When logistic regression fails?

• Example in which the logistic regression model fails

Limitations of linear units.

• Logistic regression does not work for **parity functions** -no linear decision boundary exists

Solution: a model of a non-linear decision boundary

Example. Regression with polynomials.

Regression with polynomials of degree m

- Data points: pairs of $\langle x, y \rangle$
- Feature functions: m feature functions

$$\phi_i(x) = x^i \qquad i = 1, 2, \dots, m$$

• Function to learn:

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^{m} w_i \phi_i(x) = w_0 + \sum_{i=1}^{m} w_i x^i$$
1 \bigcup_{\psi_0} \bigcup_0 \bigcup_0 \bigcup_0

CS 1571 Intro to AI

Learning with extended linear units

Feature (basis) functions model nonlinearities

Linear regression

Logistic regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}) \qquad f(\mathbf{x}) = g(w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}))$$

Important property:

- The problem of learning the weights is the same as it was for the linear units
- **Trick:** we have changed the inputs but the weights are still linear in the new input

Learning with feature functions.

Function to learn:

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^k w_i \phi_i(x)$$

On line gradient update for the $\langle x,y \rangle$ pair

$$w_0 = w_0 + \alpha(y - f(\mathbf{x}, \mathbf{w}))$$

•

$$w_j = w_j + \alpha(y - f(\mathbf{x}, \mathbf{w}))\phi_j(\mathbf{x})$$

Gradient updates are of the same form as in the linear and logistic regression models

CS 1571 Intro to AI

Example. Regression with polynomials.

Example: Regression with polynomials of degree m

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^m w_i \phi_i(x) = w_0 + \sum_{i=1}^m w_i x^i$$

• On line update for $\langle x, y \rangle$ pair

$$w_0 = w_0 + \alpha (y - f(\mathbf{x}, \mathbf{w}))$$

•

$$w_i = w_i + \alpha (y - f(\mathbf{x}, \mathbf{w})) x^j$$

Multi-layered neural networks

- Alternative way to introduce nonlinearities to regression/classification models
- Idea: Cascade several simple neural models with logistic units. Much like neuron connections.

CS 1571 Intro to AI

Multilayer neural network

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

Example: (2 layer) classifier with non-linear decision boundaries

Input layer

Hidden layer

Output layer

Multilayer neural network

- Models non-linearities through logistic regression units
- Can be applied to both regression and binary classification problems

Multilayer neural network

- Non-linearities are modeled using multiple hidden logistic regression units (organized in layers)
- The output layer determines whether it is a regression or a binary classification problem

Learning with MLP

- How to learn the parameters of the neural network?
- · Online gradient descent algorithm
 - Weight updates based on $J_{\text{online}}(D_i, \mathbf{w})$

$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_i} J_{\text{online}} (D_i, \mathbf{w})$$

- We need to compute gradients for weights in all units
- Can be computed in one backward sweep through the net !!!

• The process is called **back-propagation**

CS 1571 Intro to AI

Backpropagation

(k-1)-th level

k-th level

(k+1)-th level

- $x_i(k)$ output of the unit i on level k
- $z_i(k)$ input to the sigmoid function on level k
- $w_{i,j}(k)$ weight between units j and i on levels (k-1) and k

$$z_i(k) = w_{i,0}(k) + \sum_j w_{i,j}(k)x_j(k-1)$$

$$x_i(k) = g(z_i(k))$$

Backpropagation

Update weight $w_{i,j}(k)$ using a data point $D_u = \langle \mathbf{x}, y \rangle$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w})$$

Let
$$\delta_i(k) = \frac{\partial}{\partial z_i(k)} J_{online}(D_u, \mathbf{w})$$

Then:
$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

S.t. $\delta_i(k)$ is computed from $x_i(k)$ and the next layer $\delta_i(k+1)$

$$\delta_i(k) = \left[\sum_{l} \delta_l(k+1) w_{l,i}(k+1)\right] x_i(k) (1 - x_i(k))$$

Last unit (is the same as for the regular linear units):

$$\delta_i(K) = -(y - f(\mathbf{x}, \mathbf{w}))$$

It is the same for the classification with the log-likelihood measure of fit and linear regression with least-squares error!!!

CS 1571 Intro to AI

Learning with MLP

- Online gradient descent algorithm
 - Weight update:

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{\text{online}}(D_u, \mathbf{w})$$

$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

 $x_i(k-1)$ - j-th output of the (k-1) layer

 $\delta_i(k)$ - derivative computed via backpropagation

 α - a learning rate

Online gradient descent algorithm for MLP

Online-gradient-descent (*D, number of iterations*)

Initialize all weights $w_{i,j}(k)$

for i=1:1: number of iterations

do select a data point $D_u = \langle x, y \rangle$ from D

set learning rate α

compute outputs $x_i(k)$ for each unit

compute derivatives $\delta_i(k)$ via backpropagation

update all weights (in parallel)

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

end for

return weights w

CS 1571 Intro to AI

Xor Example.

• linear decision boundary does not exist

- Optical character recognition digits 20x20
 - Automatic sorting of mails
 - 5 layer network with multiple output functions

