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Unsupervised learning

* Data: D={D,D,,.,D,}
D. =X, avector of attribute values
— e.g. the description of a patient
— no specific target attribute we want to predict (no output y)
* Objective:
— learn (describe) relations between attributes, examples

Types of problems:
* Clustering
Group together “similar” examples
* Density estimation
— Model probabilistically the population of examples
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Density estimation

Data: D= {D,,D,,..,D,}

D, =x, a vector of attribute values

Attributes:

+ modeled by random variables X ={X,, X,

— Continuous values
— Discrete values

E.g. blood pressure with numerical values

or chest pain with discrete values

yees X} with:

[no-pain, mild, moderate, strong]

Underlying true probability distribution:

p(X)
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Density estimation

Data: D:{D19D2""D'1}

D, =x, a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X), using examples in D

true distribution n samples
p(X) D=1D,,D,,..D,}

Standard (iid) assumptions: Samples
» are independent of each other

[E——

estimate
p(X)

* come from the same (identical) distribution (fixed p(X))
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

* A setofrandom variables X={X,X,,...,X, }

* A model of the distribution over variables in X

with parameters @
° Data D={D13D2:--9Dn}

Objective: find parameters © that fit the data the best, or in
other words reduce the misfit between the data and the model

* What is the best set of parameters?
— There are various criteria one can apply here.

CS 1571 Intro to Al

Parameter estimation. Basic criteria.

¢ Maximum likelihood (ML) criterion

arg mgx p(D|0,&E) ~—— Likelihood of data

& - represents prior (background) knowledge

* Maximum a posteriori probability (MAP) criterion

arg max p(© | D,&)—— Posterior probability
©

MAP selects the mode of the posterior

p(D10©,5)p(O]35)

®|D,E)=
P@ID.) p(D (&)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x, such that
* head x =1
* tail X, = 0

Model: probability of ahead @
probability of a tail 1-0)
Objective:
We would like to estimate the probability of a head 6
from data
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Parameter estimation. Example.

* Assume the unknown and possibly biased coin
« Probability of the head is 6@
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your estimate of the probability of a head ?

0 =2
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Parameter estimation. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate
7=2_0s
25
This is the maximum likelihood estimate of the parameter €
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Probability of an outcome

Data: D asequence of outcomes X; such that
* head x =1
. tail X, =0
Model: probability of a head €
probability of a tail ~ (1-6)

Assume: we know the probability 6
Probability of an outcome of a coin flip x,

P(x,|0)=0"(1-0)"" <= Bernoulli distribution

— Combines the probability of a head and a tail

— So that x, is going to pick its correct probability
— Gives @ for x, =1

— Gives (1-6) for x, =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
e head x =1
* tail x, =0
Model: probability of ahead @
probability of a tail ~ (1-6)
Assume: a sequence of independent coin flips

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|68)="?
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

. tail X =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|0)=060(-0)0(1-0)0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

* tail x, =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D= 110101

What is the probability of observing a data sequence D:

P(D|6)=00(1-0)0(1-0)0

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
. tail % =0
Model: probability of ahead @
probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|60)=600(1-6)0(1-6)0
6
PD|O) =[]0 "1-0)"
i=1

Can be rewritten using_the Bernoulli distribution:
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The goodness of fit to the data.

Learning: we do not know the value of the parameter &
Our learning goal:

* Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelithood

PDIO)=]]O"(1-6)""
i=1

Intuition:
» more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data

fit :
Error (D,0)=—-P(D |0)
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Maximum likelihood (ML) estimate.

Likelihood of data: n
P(D|0,&)=]]0"(1-6)""
i=1

Maximum likelihood estimate
0,, =argmax P(D|0,¢&)
0

Optimize log-likelihood (the same as maximizing likelihood)

[(D,0)=1og P(D|6,&)=log[[ 6" (1-6)"" =

n i=1
D x,logh+(1-x,)logl—6) =1ogdD _x, +log1-60)> " (1-x,)
i=1 i=1

i=1

N, - number of heads seen N, - number of tails seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0) =N, logf+N,log(1-6)
Set derivative to zero
oD.O) N, _ N, _
00 0 (1-0)

Solving 0=

ML Solution: 0,, = ﬂ _
N
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Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is 6
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of head and tail ?

Moo N 15

N N +N, 25
NZ_LZEZOA
N N +N, 25
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Maximum a posteriori estimate
Maximum a posteriori estimate
— Selects the mode of the posterior distribution
Ovuip = a1 gnaxp(& | D,$)
Likelihood of data

O

/ prior

(via Bayes rule)

Normalizing factor

P(D160.5)=[[071-0)""=0"(1-6)"
i=1

p(@|<&) - is the prior probability on &

How to choose the prior probability?
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Prior distribution

Choice of prior: Beta distribution

(o, +a,)
I'(a)I(a,)
I'(x) - A Gamma function

For integer values of x I'(x)=x!

p0|5) = Beta(0| oy, ;) = 0" (1-0)""

Why to use Beta distribution?
Beta distribution “fits” Bernoulli trials - conjugate choices

P(D|6,&)=60"(1-6)"
Posterior distribution is again a Beta distribution
P(D|6,%)Beta(@ | a,,a,)
P(D|&)

p@|D,&)= = Beta(0|a,+ N,,a,+ N,)
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Beta distribution

3.5
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Maximum a posterior probability

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

P(D|0,&)Beta(@ | a,,a,)
P(D|[$)

_ I'(e;+a,+N,+N,)

 T(a, + N)I(a, + N,)

p@|D,&) = =Beta(d|a, + N,,a, + N,)

0N1+a1—1 (1 _ 9)N2+a2—1

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as prior counts)

a,+N, -1
o, +o,+N +N,-2

MAP Solution:

HMAP -
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MAP estimate example

Assume the unknown and possibly biased coin
Probability of the head is 6
Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
e Assume p(@|¢&) = Beta(d|5,5)

What is the MAP estimate?
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MAP estimate example

* Assume the unknown and possibly biased coin

« Probability of the head is €

* Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10

e Assume p(@]|¢&)=Beta(0]5.5)

What is the MAP estimate ?

N, +a, -1 N, +a, -1 19
Orap = = =—
N-2 N, +N,+a +a,-2 33
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MAP estimate example

* Note that the prior and data fit (data likelihood) are combined

* The MAP can be biased with large prior counts

* Itis hard to overturn it with a smaller sample size

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10
e Assume
19
p(@| &) = Beta(8]5,5) 0,p = =
19
p(0&) = Beta(6|5,20) Orir =40
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Multinomial distribution

Example: Multi-way coin toss, roll of dice
* Data: aset of N outcomes (multi-set)
N, - anumber of times an outcome i has been seen

k
Model parameters: 0 =(6,,6,,...0,) s.t. ZHZ. =1
i=1

6, - probability of an outcome i

Probability of data (likelihood)

N! N AN ~,  Multinomial
P(N,,N,,...N, |0.5) =————6"6,>...0,* o
(N}, N, ¢ 19,5) NN, N "7 *  distribution
ML estimate: N
i, ML Wl

CS 1571 Intro to Al

MAP estimate

Choice of prior: Dirichlet distribution

k
rQ a,)
Dir(®|a,,.,a,)=—""—07"'07" .00

[[r@)

Dirichlet is the conjugate choice for multinomial
N!
P(D|0,8)=P(N,,N,,...N, 10,)=————— 00, ...0"
N|IN,I...N,!
Posterior distribution

P(D|0,5)Dir(0| oy, a,,..2;)

0|D,&)= =Dir(®|a,+N,,...,a, + N
pO[D,S) POD(&) O]+ N, +N)
MAP estimat Z @+ N, -1
estimate: iMAP = (
a,+N,)-k
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Learning complex distributions

* The problem of learning complex distributions

— can be sometimes reduced to the problem of learning a
number of simpler distributions

* Such a decomposition occurs for example in Bayesian
networks

— Builds upon independences encoded in the network

* Why learning of BBNs?
— Large databases are available

* uncover important probabilistic dependencies from data

and use them in inference tasks
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Learning of BBN parameters

Learning. Two steps:
— Learning of the network structure
— Learning of parameters of conditional probabilities
* Variables:
— Observable — values present in every data sample
— Hidden — values are never in the sample

— Missing values — values sometimes present,
sometimes not

* Here:
— learning parameters for the fixed graph structure
— All variables are observed in the dataset
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Learning of BBN parameters. Example.

Example:

P(Palen|Pneum)

?

P(Pneumonia)

T F

Pneumonia

? ?

P(HWBC|Pneum)

Pn

T

F

T
F

?
?

?
?

P(Fever|Pneum) P(Cough|Pneum)

? ?
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu

T T T
T F F
F F T
F F T
F T T
T F T
F F F
T T F
T T T
F T F
T F F
F T F

I R R R N

F

I A e R

s (o) (o) Com)
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Estimates of parameters of BBN

Much like multiple coin tosses or rolls of a dice

A “smaller” learning problem corresponds to the learning of
exactly one conditional distribution

Example:

P(Fever | Pneumonia =T)

Problem: How to pick the data to learn?
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Learning of BBN parameters. Example.

Data D (different patient cases):

Pal Fev Cou HWB Pneu

T T T
T F F
F F T
F F T
F T T
T F T
F F F
T T F
T T T
F T F
T F F
F T F

I I R RN B

F

I A e R

s (o) (o) Com)

How to estimate:

P(Fever | Pneumonia =T) ="
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 1: Select data points with Pneumonia=T

Pal Fev Cou HWB Pneu

Pneumonia

I I I I B
e I R T R BT R
el B I e e R I B B B I
e R I - e B B B I B I
e e R - R e B I B e
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)

Step 1: Ignore the rest

Pal Fev Cou HWB Pneu

F F T T T
F F T F T
F T T T T
o () (o) Crn)
F T F T T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)

Step 2: Select values of the random variable defining the
distribution of Fever

Pneumonia

Pal Fev Cou HWB Pneu
F F T T

T
T
T
F

- ] =
= = =g

F F
F T
T T
F T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 2: Ignore the rest

o Creamon)
Pneumonia

R

onesy - (ror) (Cooat) Cononwac)
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 3: Learning the ML estimate

Pneumonia

Fev

N

P(Fever | Pneumonia =T)

T F
0.6 0.4
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 3: Learning the MAP estimate

Assume the prior
0

Fever|Pneumonia =T
Fev

Pneumonia

~ Beta(3,4)

== m

P(Fever | Pneumonia =T)

T F
0.5 0.5
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