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Learning probability distributions
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Unsupervised learning

• Data:
a vector of attribute values

– e.g. the description of a patient
– no specific target attribute we want to predict (no output y)

• Objective:
– learn (describe) relations between attributes, examples

Types of problems:
• Clustering

Group together “similar” examples
• Density estimation

– Model probabilistically the population of examples
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Density estimation

Data: 

Attributes:
• modeled by random variables                                     with:

– Continuous values
– Discrete values

E.g. blood pressure with numerical values 
or chest pain with discrete values 

[no-pain, mild, moderate, strong]
Underlying true probability distribution:

},..,,{ 21 nDDDD =
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

Objective: find parameters         that fit the data the best, or in 
other words reduce the misfit between the data and the model 

• What is the best set of parameters? 
– There are various criteria one can apply here.
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Parameter estimation. Basic criteria.

• Maximum likelihood (ML) criterion

• Maximum a posteriori probability (MAP) criterion

),|(maxarg ξΘ
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ξ - represents prior (background) knowledge
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MAP selects the mode of the posterior

Likelihood of data

Posterior probability
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Objective:
We would like to estimate the probability of a head
from data

θ
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Parameter estimation.  Example.

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What would be your estimate of the probability of a head ?

θ
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Parameter estimation.  Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

This is the maximum likelihood estimate of the parameter

θ
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Probability of an outcome
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: we know the probability
Probability of an outcome of a coin flip

– Combines the probability of a head and a tail
– So that        is going to pick its correct probability 
– Gives               for
– Gives               for

)1()1()|( ii xx
ixP −−= θθθ

θ
)1( θ−
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Bernoulli distribution
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of independent coin flips 
D = H H T H T H           (encoded as D= 110101)

What is the probability of observing the data sequence D:
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Probability of a sequence of outcomes.
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:
θθθθθθθ )1()1()|( −−=DP

θ
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Probability of a sequence of outcomes.
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:
θθθθθθθ )1()1()|( −−=DP

θ
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likelihood of the data
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Probability of a sequence of outcomes.
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:

Can be rewritten using the Bernoulli distribution:

θθθθθθθ )1()1()|( −−=DP
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The goodness of fit to the data.

Learning: we do not know the value of the parameter
Our learning goal: 
• Find the parameter       that fits the data D the best? 
One solution to the “best”: Maximize the likelihood

Intuition:
• more likely are the data given the model, the better is the fit
Note:  Instead of an error function that measures how bad the data 

fit the model we have a measure that tells us how well the data 
fit :
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen

),|(maxarg ξθθ
θ

DPML =

Likelihood of data:
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Optimize log-likelihood (the same as maximizing likelihood)
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Maximum likelihood (ML) estimate.

21

11
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N
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==θML Solution:

Optimize log-likelihood

)1log(log),( 21 θθθ −+= NNDl
Set derivative to zero
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What is the ML estimate of the probability of a head and a tail?

θ
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What is the ML estimate of the probability of head and tail ?

θ

6.0
25
15
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Head:

Tail:
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Maximum a posteriori estimate

Maximum a posteriori estimate
– Selects the mode of the posterior distribution

How to choose the prior probability?

),|(maxarg ξθθ
θ
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Prior distribution

),|(
)|(
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Choice of prior: Beta distribution

Beta distribution “fits” Bernoulli trials - conjugate choices

11
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Why to use Beta distribution?

21 )1(),|( NNDP θθξθ −=

Posterior distribution is again a Beta distribution

)(xΓ - A Gamma function
!)( xx =ΓFor integer values of x
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Beta distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
α=0.5, β=0.5
α=2.5, β=2.5
α=2.5, β=5
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Maximum a posterior probability

Maximum a posteriori estimate
– Selects the mode of the posterior distribution

Notice that parameters of the prior
act like counts of heads and tails 

(sometimes they are also referred to as prior counts)
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MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

• Assume 
What is the MAP estimate?

θ

)5,5|()|( θξθ Betap =
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MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

• Assume 
What is the MAP estimate ?

θ

33
19

2
1

2
1

2121

1111 =
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−
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=
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θ

NN
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MAP estimate example

• Note that the prior and data fit (data likelihood) are combined
• The MAP can be biased with large prior counts
• It is hard to overturn it with a smaller sample size
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

• Assume 

)20,5|()|( θξθ Betap =

)5,5|()|( θξθ Betap =
33
19

=MAPθ
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19
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Multinomial distribution

Example: Multi-way coin toss, roll of dice
• Data: a set of N outcomes (multi-set)

Model parameters:

Probability of data (likelihood)

ML estimate:

N
Ni

MLi =,θ

),,( 21 kθθθ K=θ 1
1

=∑
=

k

i
iθs.t.

iN - a number of times an outcome i has been seen

kN
k

NN

k
k NNN

NNNNP θθθξ K
K

K 21
21

21
21 !!!

!),|,,( =θ

iθ - probability of an outcome i

Multinomial
distribution
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MAP estimate
Choice of prior:  Dirichlet distribution
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Dirichlet is the conjugate choice for multinomial
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Learning complex distributions

• The problem of learning complex distributions 
– can be sometimes reduced to the problem of learning a 

number of simpler distributions

• Such a decomposition occurs for example in Bayesian 
networks

– Builds upon independences encoded in the network

• Why learning of BBNs?
– Large databases are available 

• uncover important probabilistic dependencies from data  
and use them in inference tasks

CS 1571 Intro to AI

Learning of BBN parameters

Learning. Two steps:
– Learning of the network structure
– Learning of parameters of conditional probabilities

• Variables:
– Observable – values present in every data sample
– Hidden – values are never in the sample
– Missing values – values sometimes present, 

sometimes not
• Here:

– learning parameters for the fixed graph structure
– All variables are observed in the dataset
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Learning of BBN parameters. Example.

Example:
Pneumonia

CoughFeverPaleness High WBC

P(Pneumonia)

?         ?   

T         F

Pn T      F

T        ?      ?
F        ?      ?

P(HWBC|Pneum)

P(Cough|Pneum)P(Fever|Pneum)P(Palen|Pneum)

?         ?         ?         
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC
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Estimates of parameters of BBN

• Much like multiple coin tosses or rolls of a dice
• A “smaller” learning problem corresponds to the learning of 

exactly one conditional distribution 
• Example:

• Problem: How to pick the data to learn?

)|( TPneumoniaFever =P
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC

?)|( == TPneumoniaFeverP
How to estimate:
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Learning of BBN parameters. Example.

Learn:
Step 1: Select data points with Pneumonia=T

Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 1: Ignore the rest

Pal  Fev Cou HWB  Pneu
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       T     T      T       T
F       T     F      T        T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 2: Select values of the random variable defining the 

distribution of Fever

Pal  Fev Cou HWB  Pneu
F      F T      T        T
F       F T      F        T
F      T T      T       T
T       T T      T       T
F       T  F      T        T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 2: Ignore the rest

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 3: Learning the ML estimate

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

)|( TPneumoniaFever =P

0.6     0.4   

T         F

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 3: Learning the MAP estimate
Assume the prior

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

)|( TPneumoniaFever =P

0.5     0.5

T         F

Pneumonia

CoughFeverPaleness High WBC

)4,3(~| BetaTPneumoniaFever =θ


