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Decision making in the presence
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Administration

• Final exam
– Monday, December 08, 2003 at 10:00-11:50am

• Problem set 9 is out:
– Due on Thursday, November 20, 2003
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Topics

• Review of the decision tree model and its properties
• Modeling of exploratory action
• Utility theory

CS 1571 Intro to AI

Decision-making in the presence of 
uncertainty

• Many real-world problems require to choose future actions
in the presence of uncertainty 

• Examples: patient management, investments

Main issues:
• How to model the decision process in the computer ?
• How to make decisions about actions in the presence of 

uncertainty?
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Decision tree representation of the problem

Investing $100 for 6 months 

Stock 1

Stock 2

Bank

0.6

0.4

110

90

0.4

0.6

140

80

101
1.0

100
1.0

Home

(up)

(down)

(up)

(down)
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Expected value

Stock 1

0.6

0.4

110

90100

• Let X be a random variable representing the monetary 
outcome with a discrete set of values       . 

• Expected value of X is:

• Expected value summarizes all stochastic outcomes 
into a single quantity

• Example:

Expected value for the outcome of the Stock 1 option is: 

∑
Ω∈

==
Xx

xXxPXE )()(

XΩ

1023666904.01106.0 =+=×+×

102



4

CS 1571 Intro to AI

Selection based on expected values
The optimal action is the option that maximizes the 

expected outcome: 

Stock 1

Stock 2

Bank

0.6

0.4

110

90

0.4

0.6

140

80

101
1.0

100
1.0

Home

102

104

101

100

(up)

(down)

(up)

(down)
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Sequential (multi-stage) problems

The decision tree can be build to capture multi-stage decision 
problems:

1. Choose an action
2. Observe the stochastic outcome
3. And repeat step 1 

How to make decisions for multi-step problems?
• Start from the leaves of the decision tree (outcome nodes)
• Compute expectations at chance nodes
• Maximize at the decision nodes
Algorithm is sometimes called expectimax
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Assume:
• Two investment periods
• Two actions: stock and bank

Multi-stage decision problem

Stock

Bank

0.5

0.4

0.6

1.0

0.5

1.0

1.0

1.0

0.5

0.5

0.5
0.5

(up)

(down)

(up)

(down)

(up)

(down)

(up)

(down)

200

130

60

90

140

100

125

80

105

Stock

Bank

Stock

Bank

Stock

Bank
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• Probabilities:
– Later outcomes can be conditioned on the earlier 

stochastic outcomes and actions
Example: stock movement probabilities. Assume:
P(1st=up)=0.4
P(2nd=up|1st=up)=0.4
P(2nd=up|1st=down)=0.5

Properties of the decision tree model

Stock

Bank

0.6
200

130

0.4

0.6

60

90

100

0.4

1.0

1.0

0.5
0.5

125

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(1st up)

(1st down)

Stock

Bank

Stock

Bank
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Properties of the decision tree model
• Outcome values at leaf nodes (e.g. monetary values)

– Rewards and costs for the path trajectory
Example: stock fees and gains. Assume:
Fee per period: $5 paid at the beginning
Gain for up: 15%, loss for down 10%

Stock

Bank

0.6

0.4

0.6

0.4

1.0

1.0

0.5
0.5

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(1st up)

(1st down)

Stock

Bank

Stock

Bank

1000

1000-5

(1000-5)*1.15

(1000-5)*1.15-5

[(1000-5)*1.15-5]*1.15=1310.14

[(1000-5)*1.15-5]*0.9=1025.33

1310.14

1025.33
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Constructing the decision tree
Tree Structure: every observed
stochastic outcome = 1 branch

140

105

0.6

0.4

0.6

0.4

1.0

1.0

0.5

0.5

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(1st up)

(1st down)

140

80

105

80

Stock

Bank

Stock

Bank

Bank

Stock

0.5

0.4

0.6

0.5

1.0

1.0

0.5

0.5

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(1st up)

(1st down)

200

130

60

90

100

125

Stock

Bank

Stock

Bank
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• Structure
– Collapse of branches often possible

Example:

Constructing the decision tree

Bank

0.6

1.0

0.4

0.6

140

0.4

1.0

1.0

1.0

0.5
0.5

80

105

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(1st up)

(1st down)

140

80

105

140

80

105

Stock

Bank

Stock

Bank

Stock

Bank

Bank

0.46

0.54
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• Structure
– Collapse of the branches are possible

Constructing the decision tree

Bank

0.6

1.0

0.4

0.6

140

0.4

1.0

1.0

1.0

0.5
0.5

80

105

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(2nd up)

(2nd down)

(1st up)

(1st down)

140

80

105

140

80

105

Stock

Bank

Stock

Bank

Stock

Bank

Bank

0.46

0.54

0.4x0.4+0.6x0.5=0.46
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Information-gathering actions
• Some actions and their outcomes irreversibly change the 

world
• Information-gathering (exploratory) actions:

– make an inquiry about the world 
– Key benefit: reduction in  the uncertainty

• Example: medicine
– Assume a patient is admitted to the hospital with some set of 

initial complaints
– We are uncertain about the underlying problem and consider 

a surgery, or a medication to treat them
– But there are often lab tests or observations that can help us 

to determine more closely the disease the patient suffers from
– Goal of lab tests: Reduce the uncertainty of outcomes of 

treatments so that better treatment option can be chosen 
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Decision-making with exploratory actions
In decision trees:
• Exploratory actions can be represented and reasoned 

about the same way as other actions.

How do we capture the effect of exploratory actions in the 
decision tree model?

• Information obtained through exploratory actions may affect 
the probabilities of later outcomes 
– Recall that the probabilities on later outcomes can be 

conditioned on past observed outcomes and past actions
– Sequence of past actions and outcomes is “remembered” 

within the decision tree branch
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An oil wildcatter has to make a decision of whether to drill 
or not to drill on a specific site

• Chance of hitting an oil deposit:
• Oil: 40%
• No-oil: 60%

• Cost of drilling: 70K
• Payoffs: 

• Oil: 220K
• No-oil: 0 K

Oil wildcatter problem.

4.0)( == TOilP
6.0)( == FOilP

Drill

0.4

0.6

220-70=150

No-drill

1.0

-70

0
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An oil wildcatter has to make a decision of whether to drill 
or not to drill on a specific site

• Chance of hitting an oil deposit:
• Oil: 40%
• No-oil: 60%

• Cost of drilling: 70K
• Payoffs: 

• Oil: 220K
• No-oil: 0 K

Oil wildcatter problem.

4.0)( == TOilP
6.0)( == FOilP

Drill

0.4

0.6

220-70=150

No-drill

0
1.0

-70

18

0
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Oil wildcatter problem
• Assume that in addition to the drill/no-drill choices we have an 

option to run the seismic resonance test
• Seismic resonance test results:

– Closed pattern (more likely when the hole holds the oil)
– Diffuse pattern (more likely when empty)

• Test cost: 10K

closed diffuse

Oil True
False

patterntestresonanceSeismic

8.0
3.0

2.0
7.0

)|( testresonanceSeismicOilP
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Oil wildcatter problem.

Drill
0.4

0.6

220-70=150

No-drill

0
1.0

-70

18

0

• Decision tree

Drill

0.16

0.84

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

18

0

Drill

0.64

0.36

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

18

0

0
Test

0.5

0.5

(closed)

(diffuse)

(oil)

(oil)

(oil)

(no-oil)

(no-oil)

(no-oil)
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Oil wildcatter problem.

Drill

0.4

0.6

220-70=150

No-drill
0

1.0

-70

18

0

• Alternative model

Drill

0.16

0.84

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

18

0

Drill

0.64

0.36

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

18

0

0
Test

NoTest

0.5

0.5

(closed)

(diffuse)

(oil)

(oil)

(oil)

(no-oil)

(no-oil)

(no-oil)
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Oil wildcatter problem.

• Decision tree probabilities
Drill

0.64

0.36

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

18

0

0
Test

NoTest

0.5

0.5

(closed)

(oil)

(oil)

(no-oil)

)|( closedTestOil =P

)(
)()|()|(

closedTestP
TOilPTOilclosedTestPclosedTestTOilP

=
===

===

)(
)()|()|(

closedTP
FOilPFOilclosedTestPclosedTestFOilP

=
===

===

)()|()()|()( TOilPTOilclosedTestPFOilPFOilclosedTestPclosedTestP ===+=====
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Oil wildcatter problem.

• Decision tree probabilities
Drill

0.64

0.36

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

18

0

0
Test

NoTest

0.5

0.5

(closed)

(oil)

(oil)

(no-oil)

)(TestP

)()|()()|()( TOilPTOilclosedTestPFOilPFOilclosedTestPclosedTestP ===+=====

(diffuse)

)()|()()|()( TOilPTOildiffTestPFOilPFOildiffTestPdiffTestP ===+=====
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Oil wildcatter problem.

Drill

0.4

0.6

220-70=150

No-drill
0

1.0

-70

18

0

• Decision tree

Drill

0.16

0.84

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

-44.8

-10

Drill

0.64

0.36

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

60.8

-10

0
Test

NoTest

0.5

0.5

(closed)

(diffuse)

(oil)

(oil)

(oil)

(no-oil)

(no-oil)

(no-oil)

60.8

-10

18

18

25.4
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Oil wildcatter problem.

Drill

0.4

0.6

220-70=150

No-drill
0

1.0

-70

18

0

• Decision tree

Drill

0.16

0.84

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

-44.8

-10

Drill

0.64

0.36

220-70-10=140

No-drill
0-10=-10

1.0

0-70-10=-80

60.8

-10

0
Test

NoTest

0.5

0.5

(closed)

(diffuse)

(oil)

(oil)

(oil)

(no-oil)

(no-oil)

(no-oil)

60.8

-10

18

18

25.4

The presence of the test and its result affected our
decision:
if test =closed then drill
if test=diffuse then do not drill
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Value of information
• When the test makes sense?
• Only when its  result makes the decision maker to change his 

mind, that is he decides not to drill.
• Value of information:

– Measure of the goodness of the information from the test
– Difference between the expected value with and without the 

test information
• Oil wildcatter example:

– Expected value without the test = 18
– Expected value with the test =25.4
– Value of information for the seismic test = 7.4
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Selection based on expected values
• Until now: The optimal action choice was the option that 

maximized the expected monetary value.  
• But is the expected monetary value always the quantity we 

want to optimize? 

Stock 1

Stock 2

Bank

0.6

0.4

110

90

0.4

0.6

140

80

101
1.0

100
1.0

Home

102

104

101

100

(up)

(down)

(up)

(down)
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Selection based on expected values
• Is the expected monetary value  always the quantity we 

want to optimize? 
• Answer: Yes, but only if we are risk-neutral.

• But what if we do not like the risk (we are risk-averse)?
• In that case we may want to get the premium for undertaking 

the risk (of loosing the money)
• Example: 

– we may prefer to get $101 for sure against $102 in 
expectation but with the risk of loosing the money

• Problem: How to model decisions and account for the risk?
• Solution: use utility function, and utility theory
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Utility function
• Utility function (denoted U)

– Quantifies how we “value” outcomes, i.e., it reflects our 
preferences 

– Can be also applied to “value” outcomes other than money 
and gains (e.g. utility of a patient being healthy, or ill)

• Decision making:
– uses expected utilities (denoted EU)

the utility of outcome x
Important !!!
• Under some conditions on preferences we can always design 

the utility function that fits our preferences

)()()( xXUxXPXEU
Xx

=== ∑
Ω∈

)( xXU =
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Utility theory
• Defines axioms on preferences that involve uncertainty and 

ways to manipulate them. 
• Uncertainty is modeled through lotteries

– Lottery: 

• Outcome A with probability p
• Outcome C with probability (1-p)

• The following six constraints are known as the axioms of 
utility theory. The axioms are the most obvious semantic 
constraints on preferences with lotteries. 

• Notation:
- preferable
- indifferent (equally preferable)

]:)1(;:[ CpAp −

f
~
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Axioms of the utility theory
• Orderability: Given any two states, the a rational agent 

prefers one of them,  else the two as equally preferable. 

• Transitivity: Given any three states, if an agent prefers A to 
B and prefers B to C, agent must prefer A to C. 

• Continuity: If some state B is between A and C in 
preference, then there is a p for which the rational agent will 
be indifferent between state B and the lottery in which A 
comes with probability p, C with probability (1-p).

)~()()( BAABBA ∨∨ ff

)()()( CACBBA fff ⇒∧

BCpAppCBA ~]:)1(;:[)( −∃⇒ff
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Axioms of the utility theory
• Substitutability: If an agent is indifferent between two 

lotteries, A and B, then there is a more complex lottery in 
which A can be substituted with B. 

• Monotonicity: If an agent prefers A to B, then the agent 
must prefer the lottery in which A occurs with a higher 
probability 

• Decomposability: Compound lotteries can be reduced to 
simpler lotteries using the laws of probability. 

]:)1(;:[~]:)1(;:[)~( CpBpCpApBA −−⇒

]):)1(;:[]:)1(;:[()( BqAqBpApqpBA −−⇔>⇒ ff

]:)1)(1(;:)1(;:[
]]:)1(;:[:)1(;:[

CqpBqpAp
CqBqpAp

−−−
⇒−−
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Utility theory
If the agent obeys the axioms of the utility theory, then
1. there exists a real valued function U such that:

2. The utility of the lottery is the expected utility, that is the 
sum of utilities of outcomes weighted by their probability

3. Rational agent makes the decisions in the presence of 
uncertainty by maximizing its expected utility

BABUAU f⇔> )()(
BABUAU ~)()( ⇔=

)()1()(]:)1(;:[ BUpApUBpApU −+=−
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Utility functions
We can design a utility function that fits our preferences if 

they satisfy the axioms of utility theory. 
• But how to design the utility function for monetary 

values so that they incorporate the risk?
• What is the relations between utility function and 

monetary values?
• Assume we loose or gain $1000. 

– Typically this difference is more significant for lower 
values (around $100 -1000) than for higher values (~ 
$1,000,000)

• What is the relation between utilities and monetary value 
for a typical person?
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Utility functions
• What is the relation between utilities and monetary value 

for a typical person?
• Concave function that flattens at higher monetary values

utility

Monetary value100,000
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Utility functions
• Risk aversion comes from the shape of the concave function

Assume a lottery L  [0.5: 500, 0.5:1000]
• Expected value of the lottery = 750
• Expected utility of the lottery  EU(lottery L) < EU(sure 750)
• Risk averse – a bonus is required for undertaking the risk 

utility

Monetary value1000500 750

EU line for lotteries 
with outcomes 500 and 1000EU(lottery L)

EU(sure 750)

Lottery L: [0.5: 500, 0.5:1000] 


