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Bayesian belief networks (BBNs)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences

among random variables

* A and B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A,B|C)=P(A|C)P(B|C)
P(A|C,B)=P(4|C)
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Bayesian belief networks (general)

Two components: B =(S,0) (B E
« Directed acyclic graph \ f
— Nodes correspond to random variables A
— (Missing) links encode independences <>/
J M
* Parameters
— Local conditional probability distributions
for every variable-parent configuration P(A[B,E)
PCX, | pa(x,) T TosE 008
Where: T F | 0.94 0.06
pa(X;) - stand for parents of X, E -Fr 85(9)1 8;39
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Bayesian belief network.

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998

P(A[B,E)
B E| T F
T T | 095 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

PAIA) \ P(M|A)
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

m -
oo
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,X,,..X,)= HP(Xi | pa(X,))

i=l,.n

OB E
Example: \ @}D
Assume the following assignment A
of values to random variables (j/ E
B=T,E=T,A=T,J=T,M=F J M
Then its probability is:

PB=T,E=T,A=T,J=T,M=F)=
PB=DTRE=DPA=T|B=T,E=T)PJ=T|A=T)AM=F| A=T)
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Parameter complexity problem

 In the BBN the full joint distribution is

P(X,X,,..X,)=[]PX,|pa(X,)
i=l,.n
* What did we save?

Cgarthquake

Parameters:
full joint: 2° =32

BBN: 2° +2(2°)+2(2)=20

Parameters to be defined:
full joint: 2° _1 =31

BBN: 2% +2(2)+2(1)=10
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Model acquisition problem

The structure of the BBN
* typically reflects causal relations
(BBNs are also sometime referred to as causal networks)

* Causal structure is intuitive in many applications domain and it
is relatively easy to define to the domain expert

Probability parameters of BBN

« are conditional distributions relating random variables and
their parents

» Complexity is much smaller than the full joint

« It is much easier to obtain such probabilities from the expert or
learn them automatically from data
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BBNs built in practice

* In various areas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
* Pathfinder (Intellipath)
» CPSC
* Munin
* QMR-DT
— Collaborative filtering
— Military applications
— Business and finance
* Insurance, credit applications
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Diagnosis of car engine

» Diagnose the engine start problem
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Car insurance example

 Predict claim costs (medical, liability) based on application data

SRS

iy (S

TedicalCos
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(ICU) Alarm network

HYPOVOLEMIA LY FAILURE ANAPHYLAXIS PULMONARY EMBOLUS

ANESTHESIA
INEUFFICIENT KINKED

PAP SHUNT |\ rigaTion TUBE  DISCONNECTION

WEMT MACHINE

CATECHOLAMINE WENT &

BLOGD KW SETTING
PRESSLIRE
KINUTE
ERRCR VEMTILATION
LOW QUTPUT
ARTERIAL
coz

HR BF HREKG HR BAT EXFIRED
coz
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CPCS
» Computer-based Patient Case Simulation system (CPCS-PM)
developed by Parker and Miller (University of Pittsburgh)
* 422 nodes and 867 arcs

e g -

e
i)
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QMR-DT

* Medical diagnosis in internal medicine

Bipartite network of disease/findings relations

OMR-DT derived from Internist-1/ QMR KB

534 discases

OOo QooG

oo Oooo

40740 arcs 4040 findings
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Inference in Bayesian networks

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

» Simplifies the acquisition of a probabilistic model
» But we are interested in solving various inference tasks:
— Diagnostic task. (from effect to cause)
P (Burglary | JohnCalls =T)
— Prediction task. (from cause to effect)
P (JohnCalls | Burglary =T)
— Other probabilistic queries (queries on joint distributions).
P(Alarm )

* Main issue: Can we take advantage of independences to
construct special algorithms and speeding up the inference?
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BBN for the device example. Inference.

* Device (equipment):
— operating normally or malfunctioning.

* A sensor indirectly monitors the operation of the device
— Sensor reading is either high or low

P(Device status)

@ normal malfunctioning

0.9 0.1

P(Sensor reading| Device status)

Device\Sensor high low
@ normal 0.1 0.9
malfunctioning 0.6 0.4
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Diagnostic inference. Example.

» Diagnostic inference: compute the probability of device
operating normally given the sensor reading is high

P(D = normal |S = high) = P(D :;fgmc;llf Sh): high)
= lg

P(D = normal,S = high) = P(S = high | D = normal).P(D = normal)

P(S = high) = > P(S = high,D = ).

Jj={normal ,malfunc }

P(S = high) = P(S = high | D = normal ) P(D = normal ) +
+ P(S = high | D = malfunc)P(D = malfunc)
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Inference in Bayesian network

* Bad news:
— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)

* But very often we can achieve significant improvements

* Assume our Alarm network

o
\
Gomeis Gy

* Assume we want to compute: P(J =T)
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Inference in Bayesian networks

Computing: P(J =T)

Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
 express the joint distribution as a product of conditionals

P(J=T)=

=> > > Y PB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=53 S Y PU=T|4=a)P(M =m| A=a)P(4=a|B=b,E = )P(B=b)P(E =)
bel F e<T ,F aeT ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: 16*4=64
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Inference in Bayesian networks

Approach 2. Interleave sums and products

* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)
P(J=T)=
=Y > > YPJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E=e)P(B=b)P(E =¢)

bel F e€T ,F a<T ,F meT ,F

=> > ZP(J=T|A=a)P(M=m|A=a)P(B=b){ ZP(A=a|B=b,E=e)P(E:e)}

bel,F ael .F mel ,F ecl |

= ZP(J:TA:a){ ZP(M:m|A:a)HZP(B:b){ ZP(A:a|B:b,E:e)P(E:e)}

ael ,F mel ,F bel ,F ecT ,F B
Computational cost:
Number of additions: 1+2*[1+1+2*1]=9

Number of products: 2*[2+2*(1+2*1)]=16
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Inference in Bayesian networks

* The smart interleaving of sums and products can help us to
speed up the computation of joint probability queries

* What if we want to compute: P(B=T7T,J =T)
P(B=T,J=T)= .
= ZP(J=T|A=a)[ ZP(M=m|A:a)HP(B=T){ ZP(A=a|B=b,E=e)P(E=e)}

ael ,F mel ,F ecl,F

ST S S A

= ZP(J:TA:a){ ZP(M:m|A:a)HZP(B:b){ ZP(A:a|B:b,E:e)P(E:e)}

ael ,F mel ,F bel ,F ecl ,F

* A lot of shared computation
— Smart cashing of results can save the time for more queries
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P(B=T,J=T)=
= Y P(J=T|A=a) ZP(M:m|A:aHP(B:T) Y P(A=a|B=b,E=e)P(E =e)
P(J = )
= ZP(J:TA:a){ > P(M=m|A=a)|| Y| P(B=b) D> P(A=a|B=b,E=e)P(E=e)

ael ,F el .F beT A | el .F'

Inference in Bayesian networks

The smart interleaving of sums and products can help us to
speed up the computation of joint probability queries

What if we want to compute: P(B=T7,J =T)

S B

A lot of shared computation
— Smart cashing of results can save the time if more queries
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Inference in Bayesian networks

When cashing of results becomes handy?
What if we want to compute a diagnostic query:

P(B=T,J=T)
P(J=T)

P(B=T|J=T)=

Exactly probabilities we have just compared !!
There are other queries when cashing and ordering of sums
and products can be shared and saves computation

P(B|J=T)=%=aP(B,J=T)

General technique: Variable elimination
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Inference in Bayesian networks

» General idea of variable elimination

P(True ) =1=
:Z{ZP(szM:a) ZP(M:m|A:a)}{zP(B:b){ZP(A:a|B:b,E:e)P(E:e)}
ael ,F|_jel,F mel ,F bel ,F Py /_
£ (@.b)
S (a) S (@) u ela,
T
fy(a)

Variable order:

Results cashed in
the tree structure

A
QJ/M\
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Inference in Bayesian network

» Exact inference algorithms:
mm=) — Variable elimination
Book Symbolic inference (D’ Ambrosio)
— Recursive decomposition (Cooper)
— Message passing algorithm (Pearl)

m=) — Clustering and joint tree approach (Lauritzen,
Book Spiegelhalter)

— Arc reversal (Olmsted, Schachter)

« Approximate inference algorithms:
m=) — Monte Carlo methods:
Book » Forward sampling, Likelihood sampling
— Variational methods

CS 1571 Intro to Al




Monte Carlo approaches

* MC approximation:
— The probability is approximated using sample frequencies
— Example:

NB:TJ:;/ #samples with B=T,J =T
N <«— total # samples

O B
Generate sample in a
top down manner, following

P(B=T,J =T)=

* BBN sampling:

the links

* One sample gives one assignment of values to all variables
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BBN sampling example

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998

P(A[B,E)
B E| T F
T T | 095 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

P(IA)

\ P(M|A)
Al T F Al T F
T| 0.90 0.1
F| 0.05 0.95

m -

CS 1571 Intro to Al




BBN sampling example

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake) [0.002 0.998
F P(A|B,E)
BE| T F
T T |0.95 0.05
T F | 0.94 0.06
F T [029 0.71
F F | 0.0010.999

P(J|A) \ P(M|A)
Al T F Al T F

T 0.90 0.1
F| 0.05 0.95

M-
oo
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BBN sampling example

P(B) P(E)

T F

T F
Burglary )| 0.001 0.999 | ( Earthquake ) [0.002 0.998

P(A|B,E) F
T F
0.95 0.05
0.94 0.06

0.29 0.71
0.001 0.999

m

POIA) \ P(MIA)
Al T F Al T F

T|0.90 0.1
F| 0.05 0.95

m -
oo
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BBN sampling example

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
F P(A|B,E) F
B E| T F
T T |0.95 0.05
T F | 0.94 0.06
F T | 029 0.71
F F | 0.0010.999 | <mmm
PUIA) \ P(M|A)
Al T F Al T F
T| 0.90 0.1 T!10.7 0.3
F | 0.05 0.95 F| 0.00 0.99
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BBN sampling example
P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) [0.002 0.998
F P(A|B,E) F
B E| T F
T T | 095 0.05
T F | 0.94 0.06
F T |029 0.71
F F | 0.001 0.999
POIA) \ P(MIA)
Al T F Al T F
T| 0.90 0.1 T 07 03
F]0.05 0.35 F | 0.01 0.99
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BBN sampling example

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998

P(A|B,E) F

F
B E T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999

P(J|A)

\ P(M|A)
Al T F A =
T|0.90 0.1
F| 0.05 0.95

-
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Monte Carlo approaches

* MC approximation of conditional probabilities:
— The probability is approximated using sample frequencies

— Example:
N N «—— H#samples with B=T,J =T
P(B=T|J=T)=—1"0
NJ:T e

# samples with J =T

* Rejection sampling:
— Generate sample for the full joint by sampling BBN

— Use only samples that agree with the condition, the
remaining samples are rejected

* Problem: many samples can be rejected
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