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Uncertainty
• Is an  essential feature of many real-world problems 
• Relations between components, states of the world are 

often uncertain
Examples: 
• Medical diagnosis

– A patient suffering from pneumonia may not have fever all 
the times, may or may not have a cough, white blood cell 
test can be in a normal range.

– High fever is typical for many diseases (e.g. bacterial 
diseases) and does not point specifically to pneumonia

• Therapy planning
– A response of a patient to a therapy is not deterministic, the 

patient’s state can improve, stay the same, or worsen
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Modeling the uncertainty.
Key issues:
• How to describe, represent the relations in the presence of 

uncertainty? 
• How to manipulate such knowledge to make inferences?

– Humans can reason with uncertainty. 

Pneumonia

CoughFeverPaleness WBC count

?
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Probability theory

a well-defined coherent theory for representing uncertainty and 
for reasoning with it

Representation:
Propositional statements – assignment of values to random 

variables

Probabilities over statements model the degree of belief in these 
statements 
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Joint probability distribution
Joint probability distribution (for a set variables)
• Defines probabilities for all possible assignments of values to 

variables in the set
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Marginalization - summing out variables
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Variable independence
• The joint distribution over a subset of variables can be 

always computed from the joint distribution through 
marginalization 

• Not the other way around !!! 
– Only exception: when variables are independent

)(WBCcountP
005.0 993.0 002.0

),( WBCcountpneumoniaP
high normal low

Pneumonia True
False

WBCcount

0008.0
0042.0

0001.0
9929.0

0001.0
0019.0

)(PneumoniaP

001.0
999.0

)()(),( BPAPBAP =



4

CS 1571 Intro to AI

Conditional probability

Conditional probability :
• Probability of A given B

• Conditional probability is defined in terms of joint probabilities
• Joint probabilities can be expressed in terms of conditional 

probabilities

• Conditional probability – is useful for various probabilistic 
inferences 
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Bayes rule
Conditional probability. 

Bayes rule:

When is it useful?
• When we are interested in computing the diagnostic 

probability, from the causal probability

• Reason: It is often easier to assess causal probability
– E.g. Probability of pneumonia causing fever

vs. probability of pneumonia given fever
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Probabilistic inference 
Various inference tasks:

• Diagnostic task. (from effect to cause)

• Prediction task.  (from cause to effect)

• Other probabilistic queries (queries on joint distributions).
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Inference

Any query  can be computed from the full joint distribution !!!
• Joint over a subset of variables is obtained through 

marginalization

• Conditional probability over set of variables, given  other 
variables’ values is obtained through marginalization and 
definition of conditionals 
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Inference.
Any query  can be computed from the full joint distribution !!!
• Any joint probability can be expressed as a product of 

conditionals via the chain rule. 

• It is often easier to define the distribution in terms of conditional 
probabilities:
– E.g. 
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Simple diagnostic inference. Example.

• Device (equipment) operating normally or malfunctioning.
– Operation of the device sensed indirectly via a sensor

• Sensor reading is either high or low

Device status

Sensor reading

P(Device status)

0.9              0.1

normal       malfunctioning

Device\Sensor        high      low

normal                  0.1         0.9
malfunctioning       0.6         0.4

P(Sensor reading| Device status)
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Diagnostic inference. Example.

• Diagnostic inference: compute the probability of device 
operating normally or malfunctioning given a sensor reading

• Note that the opposite conditional probabilities are available 
• Solution: apply Bayes rule to reverse the conditioning 

variables

?)readingSensor |status Device( == highP









==

==
=

)readingSensor |status Device(
)readingSensor |status Device(
highningmalfunctioP

highnormalP

CS 1571 Intro to AI

Modeling uncertainty with probabilities

• Defining the full joint distribution  makes it possible to 
represent and reason with uncertainty in a uniform way

• We are able to handle an arbitrary inference problem
Problems:

– Space complexity. To store a full joint distribution we 
need  to remember             numbers.
n – number of random variables, d – number of values

– Inference (time) complexity. To compute some queries 
requires        .          steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       

 )(dnO

 )(dnO
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Medical diagnosis example. 

• Space complexity. 
– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)
– Number of assignments: 2*2*2*3*2=48
– We need to define at least 47 probabilities.

• Time complexity.
– Assume we need to compute the marginal of Pneumonia=T 

from the full joint distribution

– Sum over: 2*2*3*2=24 combinations
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Modeling uncertainty with probabilities

• Knowledge based system era (70s – early 80’s)
– Extensional non-probabilistic models
– Solve the space, time and acquisition bottlenecks in 

probability-based models 
– froze the development and advancement of KB systems 

and contributed to the slow-down of AI in 80s in general 

• Breakthrough  (late 80s, beginning of 90s)
– Bayesian belief networks

• Give solutions to the space, acquisition bottlenecks
• Partial solutions for time complexities

• Bayesian belief network
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 
• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Alarm system example.
• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 
can get occasionally set off by an earthquake. You have two 
neighbors, Mary and John, who do not know each other. If 
they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:
– Burglary, Earthquake, Alarm, Mary calls and John calls

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls
• Links = direct (causal) dependencies between variables.

The chance of Alarm is influenced by Earthquake, The 
chance of John calling is affected by the Alarm
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Bayesian belief network.

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

CS 1571 Intro to AI

Bayesian belief networks (general)

Two  components:
• Directed acyclic graph

– Nodes correspond to random variables 
– (Missing) links encode independences

• Parameters
– Local conditional probability distributions

for every variable-parent configuration

))(|( ii XpaXP

A

B

MJ

E),( SSB Θ=

)( iXpa - stand for parents of  Xi
Where:

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(A|B,E)
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):
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Then its probability is:

Assume the following assignment
of values to random variables
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