Partial order planning

Planning

Planning problem:
• find a sequence of actions that lead to a goal
• this requires to model and reason about effects of agent’s actions on the real-world.

Planning problem:
– is a special type of a search problem
• State space: states of the world.
• Initial state: A world state we start from.
• Operators. Application of actions that change the state.
• Goal condition. Desired state of the world.
Planning

Specifics of planning problems:
– Complex description of world states
– Large number of actions
– Every action effects only a “small” subset of relations in the state
– Goals are defined over a “small” set of relations

Challenges:
– Build a representation language for modeling action and change
– Design of special search algorithms for a given representation

Planning systems design.

Two planning systems designs:
• Situation calculus
 – based on first-order logic,
 – a situation variable models new states of the world
 – use inference methods developed for FOL to do the reasoning
• STRIPS – planners
 – STRIPS – Stanford research institute problem solver
 – Restricted language as compared to the situation calculus
 – Allows for more efficient planning algorithms
STRIPS representation.

- More restricted representation language as compared to the situation calculus
- **States:**
 - represent facts that are true at a specific point in time
 - conjunction of literals, e.g. $On(A,B)$, $On(B,Table)$, $Clear(A)$
- **Actions (operators):**

 Operator: $Move(x,y,z)$
 - **Preconditions:** $On(x,y)$, $Clear(x)$, $Clear(z)$
 - **Effect lists:**
 - **Add list:** $On(x,z)$, $Clear(y)$
 - **Delete list:** $On(x,y)$, $Clear(z)$
 (Everything else is unaffected)
- **Goals:** conjunctions of literals, e.g. $On(A,B)$, $On(B,C)$

STRIPS representation. Benefits.

Benefits:

- States, actions and goals have structure
- **Action representation:**
 - Leads to more intuitive and compact description of actions
 (no need to write many axioms !!!)
 - Avoids the frame problem
- Restrictions lead to more efficient planning algorithms.

STRIPS planning:

- find a sequence of operators from the initial state to the goal
- Search problem definition in STRIPS looks much like the standard search problem definition
STRIPS planning.

STRIPS planning problem:
• Find a sequence of actions that lead to a goal
• States and goals are defined by a conjunctions of literals

Two basic search methods:
• Forward search (goal progression)
 – From the initial state try to reach the goal
• Backward search (goal regression)
 – Start from the goal and try to project it to the initial state

More complex planning method:
• Partial-order planning (POP)
 – Search the space of partially build plans

Divide and conquer.

• Divide and conquer strategy:
 – divide the problem to a set of smaller sub-problems,
 – solve each sub-problem independently
 – combine the results to form the solution

In planning we would like to satisfy a set of goals
• Divide and conquer in planning:
 – Divide the planning goals along individual goals
 – Solve (find a plan for) each of them independently
 – Combine the plan solutions in the resulting plan

• Is it always safe to use divide and conquer in planning?
 – No. There can be interacting goals.
Sussman’s anomaly.

• An example from the blocks world in which divide and conquer fails due to interacting goals

\[
\begin{align*}
\text{Initial state} & \quad \text{Goal} \\
C & \quad A \\
A & \quad B \\
& \quad C \\
\end{align*}
\]

\[
\begin{align*}
On(A, B) \\
On(B, C)
\end{align*}
\]

Sussman’s anomaly

1. Assume we want to satisfy \(On(A, B) \) first

\[
\begin{align*}
\text{Initial state} & \quad \text{Subgoal reached} \\
C & \quad A \quad B \\
A & \quad B \quad C
\end{align*}
\]

But then we cannot satisfy \(On(B, C) \) without undoing \(On(A, B) \)
1. Assume we want to satisfy $On(A, B)$ first

 ![Initial state](initial_state.png)

 ![Subgoal reached](subgoal_reached.png)

 But then we cannot satisfy $On(B, C)$ without undoing $On(A, B)$

2. Assume we want to satisfy $On(B, C)$ first.

 ![Initial state](initial_state.png)

 ![Subgoal reached](subgoal_reached.png)

 But now we cannot satisfy $On(A, B)$ without undoing $On(B, C)$

State space vs. plan space

- An alternative to planning algorithms that search states (configurations of world) is to search the space of plans
- **Plan:** Defines sequences of operators to be performed
- **Partial plan:**
 - Some plan steps are missing
 - Some orderings of operators are not finalized
 - Only relative order is given
- **Benefits of working with partial plans:**
 - We do not have to build the sequence from the initial state or the goal
 - We do not have to commit to a specific action sequence
 - We can work on sub-goals individually (divide and conquer)
State-space vs. plan-space search

State-space search

STRIPS operator

\[S_0 \rightarrow S_1 \rightarrow S_2 \]

State (set of formulas)

Plan-space search

Plan transformation operators

Start

Finish

Incomplete (partial) plan

Plan transformation operators

Examples of operators:

- Add an operator to a plan so that it satisfies some open condition

- Add link (+ instantiate)

- Order (reorder) operators
Partial-order planners (POP)

- Also called **Non-linear planners**
- Use STRIPS operators

Graphical representation of an operator *Move(x,y,z)*

```
On(x,z)  Clear(y)    add list
Move(x,y,z)
On(x,y)  Clear(x)  Clear(z)  preconditions
```

Delete list is not shown !!!

Illustration of POP on the Sussman’s anomaly case

Partial order planning. Start and finish.

```
Start
On(C,A)  Clear(F1)  On(A,F1)  Clear(B)  On(B,F1)  Clear(C)

On(A,B)  On(B,C)  Finish

A
B
C

Goal
```

CS 1571 Intro to AI
Partial order planning. Start and finish.

Open conditions: conditions yet to be satisfied

Partial order planning. Add operator.

We want to satisfy an open condition

Always select an operator that helps to satisfy one of the open conditions
Partial order planning. Add link.

Start
On(C,A) Clear(Fl) On(A,Fl) Clear(B) On(B,Fl) Clear(C)

Move(A,y,B)
Clear(A) On(A,y) Clear(B)
Clear(y) On(A,B)

On(A,B) Clear(y)

Finish
On(A,B) On(B,C)

Add link
Satisfies an open condition

CS 1571 Intro to AI
Partial order planning. Add link.

Satisfies an **open condition**

instantiates y/Fl

Partial order planning. Add operator.
Partial order planning. Add links.

CS 1571 Intro to AI

Partial order planning. Interactions.

CS 1571 Intro to AI
Partial order planning. Order operators.

Partial order planning. Add operator
Partial order planning. Add links.

Start

On(C,A)
Clear(Fl)
On(C,Fl)
Clear(A)
Move(C,Fl)
On(C,Fl)
Clear(A)

Clear(Fl)
On(C,A)
Clear(Fl)
On(C,Fl)
Clear(A)

Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)
Move(A,Fl)
On(A,Fl)
Clear(A)
Clear(B)

On(A,B)
Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)

Clear(Fl)
On(A,B)
Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)

Finish

On(A,B)
Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)

On(B,C)
Clear(Fl)
On(B,Fl)
Clear(A)
Clear(B)

Goal

C

Start

A
B
C

Partial order planning. Threats.

Start

On(A,Fl)
Clear(B)
On(B,Fl)
Clear(C)

Clear(Fl)
On(A,B)
Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)

On(A,B)
Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)

Clear(Fl)
On(A,B)
Clear(Fl)
On(A,Fl)
Clear(A)
Clear(B)

Goal

C

Start

A
B
C

Deletes Clear(C)
B moved on top of C
Partial order planning. Result plan.

Plan: a topological sort of a graph
Partial order planning.

• **Remember** we search the space of partial plans

![Diagram of partial order planning](image)

• **POP:** is sound and complete

Hierarchical planners

Extension of STRIPS planners.

• Example planner: ABSTRIPS.

Idea:

• Assign a **criticality level** to each conjunct in preconditions list of the operator

• Planning process refines the plan gradually based on criticality threshold, starting from the highest criticality value:

 – Develop the plan ignoring preconditions of criticality less than the criticality threshold value (assume that preconditions for lower criticality levels are true)

 – Lower the threshold value by one and repeat previous step
Towers of Hanoi

Start position Goal position

Hierarchical planning

Assume:

- the largest disk – criticality level 2
- the medium disk – criticality level 1
- the smallest disk – criticality level 0
Planning with incomplete information

Some conditions relevant for planning can be:
 – true, false or unknown

Example:

- Robot and the block is in Room 1
- **Goal:** get the block to Room 4
- **Problem:** The door between Room 1 and 4 can be closed

![Diagram of Rooms and Doors]

Initially we do not know whether the door is opened or closed:

- **Different plans:**
 – If **not closed**: pick the block, go to room 4, drop the block
 – If **closed**: pick the block, go to room 2, then room 3 then room 4 and drop the block

![Diagram of Rooms and Doors]
Conditional planners

- Are capable to create conditional plans that cover all possible situations (contingencies) – also called contingency planners
- Plan choices are applied when the missing information becomes available
- Missing information can be sought actively through actions
 - Sensing actions

Example:
CheckDoor(d): checks the door d
Preconditions: Door(d,x,y) – one way door between x and y
& At(Robot,x)
Effect: (Closed(d) v ¬Closed(d)) - one will become true
Conditional plans

Sensing actions and conditions incorporated within the plan:

Pick(B) → CheckDoor(D) → Closed door?

F → Go (R1,R4) → Drop(B)

T → Go (R1,R2) → Go (R2,R3) → Go(R3,R4)