STRIPS planning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration

• Problem set 6 is out
 – due on Tuesday, October 28, 2003
• Midterm:
 – at the end of the lecture
Planning

Planning problem:
• find a sequence of actions that lead to a goal
• is a special type of a search problem

Specifics of a planning problem:
• Very complex states
• Large number of actions
• Every action effects only a “small” subset of relations in the state
• Goal conditions are defined over a “small” set of relations

Ways to deal planning problems:
• Open state, action and goal representations to allow selection, reasoning. Expose the structure.
 – Use FOL or its restricted subset to do the reasoning.
• Drop the need to construct solutions sequentially from the initial state.
 – Apply divide and conquer strategies to sub-goals.

Challenges:
• Build a representation language for modeling action and change
• Design of special search algorithms for a given representation
Planning systems design.

Two planning systems designs:

- **Situation calculus**
 - based on first-order logic,
 - a situation variable models new states of the world
 - use inference methods developed for FOL to do the reasoning

- **STRIPS – like planners**
 - STRIPS – Stanford research institute problem solver
 - Restricted language as compared to the situation calculus
 - Allows for more efficient planning algorithms

Situation calculus

- Logic for reasoning about changes in the state of the world
- **The world is described by:**
 - Sequences of situations of the current state
 - Changes from one situation to another are caused by actions
- **The situation calculus allows us to:**
 - Describe the initial state and goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB allows us to derive (prove) the goal state
 - and thereby allow us to extract a plan

Situation calculus

The language is based on First order logic plus:

- **Special variables**: s,a – objects of type situation and action
- **Action functions** that return actions.
 - E.g. $\text{Move}(A, \text{TABLE}, B)$ represents a move action
 - $\text{Move}(x,y,z)$ represents an action schema
- **Two special function symbols of type situation**
 - s_\emptyset – initial situation
 - $\text{DO}(a,s)$ – denotes the situation obtained after performing an action a in situation s
- **Situation-dependent functions and relations**
 (also called fluents)
 - **Relation**: $\text{On}(x,y,s)$ – object x is on object y in situation s;
 - **Function**: $\text{Above}(x,s)$ – object that is above x in situation s.

Situation calculus. Blocks world example.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(A,\text{Table}, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(B,\text{Table}, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(C,\text{Table}, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(A, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(B, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(C, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Clear}(\text{Table}, s_\emptyset)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(A,B, s)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(B,C, s)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{On}(C,\text{Table}, s)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find a state (situation) s, such that
Blocks world example.

Initial state
- On(A, Table, s₀)
- On(B, Table, s₀)
- On(C, Table, s₀)
- Clear(A, s₀)
- Clear(B, s₀)
- Clear(C, s₀)
- Clear(Table, s₀)

Goal
- On(A, B, s)
- On(B, C, s)
- On(C, Table, s)

Note: It is not necessary that the goal describes all relations, e.g., Clear(A, s)

Assume a simpler goal On(A, B, s)

Initial state
- On(A, Table, s₀)
- On(B, Table, s₀)
- On(C, Table, s₀)
- Clear(A, s₀)
- Clear(B, s₀)
- Clear(C, s₀)
- Clear(Table, s₀)

3 possible goal configurations

Goal On(A, B, s)
Knowledge about the world. Axioms.

Knowledge base we need to built to support the reasoning:
• Must represent changes in the world due to actions.

Two types of axioms:
• **Effect axioms**
 – changes in situations that result from actions
• **Frame axioms**
 – things preserved from the previous situation

Blocks world example. Effect axioms.

Effect axioms:
Moving x from y to z. \(MOVE (x, y, z) \)

Effect of move changes on **On** relations
\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))
\]

\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))
\]

Effect of move changes on **Clear** relations
\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))
\]

\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table)
\rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))
\]
Blocks world example. Frame axioms.

- **Frame axioms.**
 - Represent things that remain unchanged after an action.

 On relations:

 \[\text{On}(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow \text{On}(u, v, \text{DO}(\text{MOVE}(x, y, z), s)) \]

 Clear relations:

 \[\text{Clear}(u, s) \land (u \neq z) \rightarrow \text{Clear}(u, \text{DO}(\text{MOVE}(x, y, z), s)) \]

Planning in situation calculus.

Planning problem:

- find a sequence of actions that lead to a goal

Planning in situation calculus is converted to theorem proving.

Goal state:

\[\exists s \text{ On}(A, B, s) \land \text{On}(B, C, s) \land \text{On}(C, \text{Table}, s) \]

- Possible inference approaches:
 - **Inference rule approach**
 - **Conversion to SAT**

- **Plan** (solution) is a byproduct of theorem proving.
- **Example:** blocks world
Planning in a blocks world.

Initial state

- On(A, Table, s_0)
- On(B, Table, s_0)
- On(C, Table, s_0)
- Clear(A, s_0)
- Clear(B, s_0)
- Clear(C, s_0)
- Clear(Table, s_0)

Goal

- On(A, B, s)
- On(B, C, s)
- On(C, Table, s)

Planning in the blocks world.

Initial state (s_0)

\[
\begin{align*}
& On(A, Table, s_0) & Clear(A, s_0) & Clear(Table, s_0) \\
& On(B, Table, s_0) & Clear(B, s_0) \\
& On(C, Table, s_0) & Clear(C, s_0) \\
\end{align*}
\]

Action: MOVE (B, Table, C)

\[
\begin{align*}
&s_1 = DO(MOVE(B, Table, C), s_0) \\
& On(A, Table, s_1) & Clear(A, s_1) \\
& On(B, C, s_1) & Clear(B, s_1) \\
& -On(B, Table, s_1) & Clear(C, s_1) \\
& On(C, Table, s_1) & Clear(Table, s_1) \\
\end{align*}
\]
Planning in the blocks world.

Initial state (s_0) \rightarrow s_1 \rightarrow s_2

$s_1 = DO(MOVE(B,Table,C),s_0)$
$On(A,Table,s_1)$
$On(B,C,s_1)$
$\neg On(B,Table,s_1)$
$On(C,Table,s_1)$

$Clear(A,s_1)$
$Clear(B,s_1)$
$\neg Clear(C,s_1)$

$Clear(Table,s_1)$

Action: $MOVE(A,Table,B)$

$s_2 = DO(MOVE(A,Table,B),s_1)$

$On(A,B,s_2)$
$On(B,C,s_2)$
$On(C,Table,s_2)$

$\neg On(A,Table,s_2)$
$\neg On(B,Table,s_2)$
$\neg On(C,Table,s_2)$

$\neg Clear(B,s_2)$
$\neg Clear(C,s_2)$

$Clear(A,s_2)$
$Clear(B,s_2)$
$Clear(Table,s_2)$

Planning in situation calculus.

Planning problem:
- Find a sequence of actions that lead to a goal
- Is a special type of a search problem
- Planning in situation calculus is converted to theorem proving.

Problems:
- Large search space
- Large number of axioms to be defined for one action
- Proof may not lead to the best (shortest) plan.
STRIPS representation.

- More restricted representation language as compared to the situation calculus
- **States:**
 - represent facts that are true at a specific point in time conjunction of literals, e.g. \(\text{On}(A,B), \text{On}(B,\text{Table}), \text{Clear}(A)\)
- **Actions (represented by operators):**

 Operator: \(\text{Move} (x,y,z)\)
 - **Preconditions:** \(\text{On}(x,y), \text{Clear}(x), \text{Clear}(z)\)
 - **Effect lists:**
 - **Add list:** \(\text{On}(x,z), \text{Clear}(y)\)
 - **Delete list:** \(\text{On}(x,y), \text{Clear}(z)\)
 (Everything else is unaffected)

- **Goals:** conjunctions of literals, e.g. \(\text{On}(A,B), \text{On}(B,C)\)
STRIPS representation. Benefits.

Benefits:
- States, actions and goals have structure
- Action representation:
 - Leads to more intuitive and compact description of actions
 (no need to write many axioms !!!)
 - Avoids the frame problem
- Restrictions lead to more efficient planning algorithms.

STRIPS planning:
- find a sequence of operators from the initial state to the goal
- Search problem definition in STRIPS looks much like the standard search problem definition

STRIPS planning.

STRIPS planning problem:
- Find a sequence of actions that lead to a goal
- States and goals are defined by a conjunctions of literals

Two basic search methods:
- Forward search (goal progression)
 - From the initial state try to reach the goal
- Backward search (goal regression)
 - Start from the goal and try to project it to the initial state

More complex planning method:
- Partial-order planning (POP)
 - Search the space of partially build plans
Forward search (goal progression)

- **Idea:** Given a state s
 - Unify the preconditions of some operator a with s
 - Add and delete sentences from the add and delete list of an operator a from s to get a new state

- **Search tree:**
 - Initial state $A B C$
 - Move operators to generate new states to explore
 - Check new states whether they satisfy the goal
Backward search (goal regression)

Idea: Given a goal on a goal list G,
- find an operator that satisfies it (it is on its add list)
- Add its preconditions to the goal list G

Example:

```
\begin{array}{c}
\text{A} & \text{B} & \text{C} \\
\end{array}
\quad \xrightarrow{\text{Move} (x,y,z)} \\
\begin{array}{c}
\text{A} & \text{B} & \text{C} \\
\end{array}
```

New goal (G')

```
On (A, Table)  
Clear (B)      
Clear (A)      
On (B, C)      
On (C, Table)  
```

Goal (G)

```
On (A, B)  
On (B, C)  
On (C, Table)  
```

precondition add

```
\begin{array}{c}
\text{A} & \text{B} & \text{C} \\
\end{array}
```

Backward search (goal regression)

More detailed description: Given a goal G
- Unify the add list of some operator a with a subset of G
- If the delete list of a does not remove elements of G, then the goal regresses to a new goal G' that is obtained from G by:
 - deleting add list of a
 - adding preconditions of a
Backward search (goal regression)

- Use operators to generate new goal conditions
- Check whether the initial state satisfies the current goal

Search tree: