Planning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration

- **Midterm:**
 - Thursday, October 16, 2003
 - In-class, closed book
 - Search and Logic
 - Last year midterm is on the course web page
Planning

Assume: We want to design an intelligent agent that acts in the real world and accomplishes desired goals

Planning problem:
• find a sequence of actions that lead to a goal
• this requires to model and reason about effects of agent’s actions on the real-world.

Example: action of painting car12 causes:
\[\text{color(car12, white)} = \text{true} \]
\[\text{color(car12, white)} = \text{false} \]
and \[\text{color(car12, blue)} = \text{true} \]

Planning problem:
• is a special type of a search problem

Planning

Search problem:
• State space. States of the world among which we search
• Initial state. A state we start from.
• Operators. Map states to new states.
• Goal condition. Test whether the goal is satisfied.

Specifics of planning problems:
• Complex states
• Large number of actions
• Every action effects only a “small” subset of relations in the state
• Goals are defined over a “small” set of relations

This causes:
• a large branching factor of the search tree,
• long action sequences (solution depth is large)
Planning search. Example.

- Assume a simple problem of buying things:
 - Get a quarter of milk, bananas, cordless drill

- A huge branch factor !!!
- Goals can take multiple steps to reach !!!

Planning

Solutions to specifics of planning problems:
- Open state, action and goal representations to allow selection, reasoning. Make things visible and expose the structure.
 - Use FOL or its restricted subset to do the reasoning.
- Add actions to the plan sequence wherever and whenever it is needed
 - Drop the need to construct solutions sequentially from the initial state.
- Apply divide and conquer strategies to sub-goals if these are independent.

Challenges:
- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation
Planning systems design.

Two planning systems designs:

- **Situation calculus**
 - based on the first-order logic,
 - a situation variable models new states of the world
 - use inference methods developed for FOL to do the reasoning

- **STRIPS – like planners**
 - STRIPS – Stanford research institute problem solver
 - Restricted language as compared to the situation calculus
 - Allows the design of more efficient planning algorithms

Situation calculus

- Logic for reasoning about changes in the state of the world
- **The world is described by:**
 - Sequences of *situations* of the current state
 - Changes from one situation to another are caused by actions
- **The situation calculus allows us to:**
 - Describe the initial state and goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB implies the goal state
 - and thereby allow us to extract a plan
Situation calculus

Language:
• **Special variables**: s, a – objects of type situation and action
• **Action functions** that return actions.
 – E.g. $Move(A, \text{TABLE}, B)$ represents a move action
 – $Move(x, y, z)$ represents an action schema
• **Two special function symbols of type situation**
 – s_0 – initial situation
 – $DO(a, s)$ – denotes the situation obtained after performing an action a in situation s
• **Situation-dependent functions and relations** (also called fluents)
 – **Relation**: $On(x, y, s)$ – object x is on object y in situation s;
 – **Function**: $Above(x, s)$ – object that is above x in situation s.

Situation calculus. Blocks world example.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Initial state
- $On(A, \text{Table}, s_0)$
- $On(B, \text{Table}, s_0)$
- $On(C, \text{Table}, s_0)$
- $Clear(A, s_0)$
- $Clear(B, s_0)$
- $Clear(C, s_0)$
- $Clear(\text{Table}, s_0)$

Goal
- $On(A, B, s)$
- $On(B, C, s)$
- $On(C, \text{Table}, s)$
Blocks world example.

Initial state

On(A, Table, s₀)
On(B, Table, s₀)
On(C, Table, s₀)
Clear(A, s₀)
Clear(B, s₀)
Clear(C, s₀)
Clear(Table, s₀)

Goal

On(A, B, s)
On(B, C, s)
On(C, Table, s)

Note: It is not necessary that the goal describes all relations

Clear(A, s)

Blocks world example.

Assume a simpler goal On(A, B, s)

Initial state

On(A, Table, s₀)
On(B, Table, s₀)
On(C, Table, s₀)
Clear(A, s₀)
Clear(B, s₀)
Clear(C, s₀)
Clear(Table, s₀)

Goal

On(A, B, s)

3 possible goal configurations
Knowledge about the world. Axioms.

Knowledge in the KB
• represents changes in the world due to actions.

Two types of axioms:
• **Effect axioms**
 – changes in situations that result from actions
• **Frame axioms**
 – things preserved from the previous situation

Blocks world example. Effect axioms.

Effect axioms:
Moving x from y to z. \(MOVE(x, y, z) \)

Effect of move changes on **On** relations
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s)) \]
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s)) \]

Effect of move changes on **Clear** relations
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s)) \]
\[On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table) \]
\[\rightarrow \neg Clear(z, DO(MOVE(x, y, z), s)) \]
Blocks world example. Frame axioms.

- **Frame axioms.**
 - Represent things that remain unchanged after an action.

 On relations:
 \[On(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow On(u, v, DO(MOVE(x, y, z), s)) \]

 Clear relations:
 \[Clear(u, s) \land (u \neq z) \rightarrow Clear(u, DO(MOVE(x, y, z), s)) \]

Planning in situation calculus.

Planning problem:
- find a sequence of actions that lead to a goal

Planning in situation calculus is converted to theorem proving.

Goal state:
\[\exists s \ On(A, B, s) \land On(B, C, s) \land On(C, Table, s) \]

- Inference approaches:
 - **Inference rule approach**
 - **Conversion to SAT problem**

Plan (solution) is a byproduct of theorem proving.

Example: blocks world
Planning in a blocks world.

Initial state

On(A, Table, s₀)
On(B, Table, s₀)
On(C, Table, s₀)
Clear(A, s₀)
Clear(B, s₀)
Clear(C, s₀)
Clear(Table, s₀)

Goal

On(A, B, s)
On(B, C, s)
On(C, Table, s)

Planning in the blocks world.

Initial state (s₀)

s₀ =

On(A, Table, s₀) Clear(A, s₀) Clear(Table, s₀)
On(B, Table, s₀) Clear(B, s₀)
On(C, Table, s₀) Clear(C, s₀)

Action: MOVE(B, Table, C)

s₁ = DO(MOVE(B, Table, C), s₀)

?
Planning in the blocks world.

Initial state (s0)

\[s_0 = \]
\[\begin{align*}
On(A, Table, s_0) & \quad Clear (A, s_0) \quad Clear (Table, s_0) \\
On(B, Table, s_0) & \quad Clear (B, s_0) \\
On(C, Table, s_0) & \quad Clear (C, s_0)
\end{align*} \]

Action: \(MOVE (B, Table, C) \)
\[s_1 = DO(MOVE (B, Table, C), s_0) \]
\[\begin{align*}
On(A, Table, s_1) & \quad Clear (A, s_1) \quad Clear (Table, s_1) \\
On(B, C, s_1) & \quad Clear (B, s_1) \\
\neg On(B, Table, s_1) & \quad \neg Clear (C, s_1)
\end{align*} \]

Planning in the blocks world.

Initial state (s0)

\[s_1 = DO(MOVE (B, Table, C), s_0) \]
\[\begin{align*}
On(A, Table, s_1) & \quad Clear (A, s_1) \quad Clear (Table, s_1) \\
On(B, C, s_1) & \quad Clear (B, s_1) \\
\neg On(B, Table, s_1) & \quad \neg Clear (C, s_1)
\end{align*} \]

Action: \(MOVE (A, Table, B) \)
\[s_2 = DO(MOVE (A, Table, B), s_1) = DO(MOVE (A, Table, B), DO(MOVE (B, Table, C), s_0)) \]
Planning in the blocks world.

Initial state (s0) → s1 → s2

$s_1 = DO(MOVE(B, Table, C), s_0)$
$On(A, Table, s_1)$
$On(B, C, s_1)$ $Clear(A, s_1)$ $Clear(Table, s_1)$
$On(C, Table, s_1)$ $Clear(B, s_1)$
$On(C, Table, s_1)$ $Clear(C, s_1)$

Action: $MOVE(A, Table, B)$
$s_2 = DO(MOVE(A, Table, B), s_1)$
$= DO(MOVE(A, Table, B), DO(MOVE(B, Table, C), s_0))$
$On(A, B, s_2)$ $→On(A, Table, s_2)$ $→Clear(B, s_2)$
$On(B, C, s_2)$ $→On(B, Table, s_2)$ $→Clear(C, s_2)$
$On(C, Table, s_2)$ $Clear(A, s_2)$ $Clear(Table, s_2)$

Planning in situation calculus.

Planning problem:
• find a sequence of actions that lead to a goal

• Planning in situation calculus is converted to theorem proving.

• Problems:
 – Large search space
 – Large number of axioms to be defined for one action
 – Proof may not lead to the best (shortest) plan.
Frame problem

Frame problem refers to:
- The need to represent a large number of frame axioms

Solution: combine positive and negative effects in one rule

\[\begin{align*}
on(u, v, DO(MOVE(x, y, z), s)) & \iff \neg((u = x) \land (v = y)) \land On(u, v, s) \lor \\
& \lor ((u = x) \land (v = z)) \land On(x, y, s) \land Clear(x, s) \land Clear(z, s))
\end{align*}\]

Inferential frame problem:
- We still need to derive properties that remain unchanged

Other problems:
- Qualification problem – enumeration of all possibilities under which an action holds
- Ramification problem – enumeration of all inferences that follow from some facts

STRIPS representation.

- More restricted representation language as compared to the situation calculus

States:
- represent facts that are true at a specific point in time
 conjunction of literals, e.g. On(A, B), On(B, Table), Clear(A)

Actions (operators):

Operator: Move(x, y, z)
- Preconditions: On(x, y), Clear(x), Clear(z)
- Effect lists:
 - Add list: On(x, z), Clear(y)
 - Delete list: On(x, y), Clear(z)
 (Everything else is unaffected)

Goals: conjunctions of literals, e.g. On(A, B), On(B, C),
Application of operators

Operator: Move (x,y,z)
- Preconditions: On(x,y), Clear(x), Clear(z)
- Add list: On(x,z), Clear(y)
- Delete list: On(x,y), Clear(z)

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>On(B,Table)</td>
<td>Clear(C)</td>
<td></td>
</tr>
<tr>
<td>On(A,Table)</td>
<td>On(C,Table)</td>
<td></td>
</tr>
<tr>
<td>Clear(A)</td>
<td>Clear(B)</td>
<td></td>
</tr>
<tr>
<td>Clear(Table)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Move (B, Table, C)

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>On(B,C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On(A,Table)</td>
<td>On(C,Table)</td>
<td></td>
</tr>
<tr>
<td>Clear(A)</td>
<td>Clear(B)</td>
<td></td>
</tr>
<tr>
<td>Clear(Table)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

STRIPS representation. Benefits.

Benefits:
- States, actions and goals have structure
- Action representation:
 - Leads to more intuitive and compact description of actions (no need to write many axioms !!!)
 - Avoids the frame problem
- Restrictions lead to more efficient planning algorithms.

STRIPS planning:
- find a sequence of operators from the initial state to the goal
- Search problem definition in STRIPS looks much like the standard search problem definition
STRIPS planning.

STRIPS planning problem:
• Find a sequence of actions that lead to a goal
• States and goals are defined by a conjunctions of literals

Two basic search methods:
• Forward search (goal progression)
 – From the initial state try to reach the goal
• Backward search (goal regression)
 – Start from the goal and try to project it to the initial state

More complex planning method:
• Partial-order planning (POP)
 – Search the space of partially build plans

Forward search (goal progression)

• Idea: Given a state s
 – Unify the preconditions of some operator a with s
 – Add and delete sentences from the add and delete list of an operator a from s to get a new state

```
Initial start state:
A | B | C

Move (x, y, z):
A | B | C

Move (B, Table, C):
A | B | C
```

```
On(B, Table)
Clear(C)

On(A, Table)
On(C, Table)
Clear(A)
Clear(B)
Clear(Table)

move:
A | B | C
A | B | C
```

```
Add:
On(B, C)

Delete:
On(A, Table)
On(C, Table)
Clear(A)
Clear(B)
Clear(Table)

Unchanged:
```

CS 1571 Intro to AI
Forward search (goal progression)

- Use operators to generate new states to explore
- Check new states whether they satisfy the goal

Search tree:

1. Initial state: A B C
2. Move (A, Table, B)
3. Move (B, Table, C)
4. Move (A, Table, C)
5. Move (A, Table, B)

Backward search (goal regression)

Idea: Given a goal G

- Unify the add list of some operator a with a subset of G
- If the delete list of a does not remove elements of G, then the goal regresses to a new goal G' that is obtained from G by:
 - deleting add list of a
 - adding preconditions of a

New goal (G'):

- $On(A, Table)$
- $Clear(B)$
- $Clear(A)$
- $On(B, C)$
- $On(C, Table)$

Goal (G):

- $On(A, B)$
- $On(B, C)$
- $On(C, Table)$

- $Move(x, y, z)$
- $Move(A, Table, B)$
Backward search (goal regression)

- Use operators to generate new goal conditions
- Check whether the initial state satisfies the current goal

Search tree:

```
Initial state: A B C

Move (B, Table, C) → Move (A, Table, B) → goal
```

CS 1571 Intro to AI