CS 1571 Introduction to AI Lecture 15

Planning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Administration

- Midterm:
 - Thursday, October 16, 2003
 - In-class, closed book
 - Search and Logic
 - Last year midterm is on the course web page

Planning

Assume: We want to design an intelligent agent that acts in the real world and accomplishes desired goals

Planning problem:

- find a sequence of actions that lead to a goal
- this requires to model and reason about effects of agent's actions on the real-world.

Example: action of painting car12 causes:

```
color(car12, white) = true to become
color(car12, white) = false
and color(car12, blue) = true
```

Planning problem:

• is a special type of a search problem

CS 1571 Intro to AI

Planning

Search problem:

- State space. States of the world among which we search
- Initial state. A state we start from.
- **Operators**. Map states to new states.
- Goal condition. Test whether the goal is satisfied.

Specifics of planning problems:

- Complex states
- Large number of actions
- Every action effects only a "small" subset of relations in the state
- Goals are defined over a "small" set of relations

This causes:

- a large branching factor of the search tree,
- long action sequences (solution depth is large)

Planning search. Example.

- Assume a simple problem of buying things:
 - Get a quarter of milk, bananas, cordless drill

- A huge branch factor !!!
- Goals can take multiple steps to reach!!!

CS 1571 Intro to AI

Planning

Solutions to specifics of planning problems:

- Open state, action and goal representations to allow selection, reasoning. Make things visible and expose the structure.
 - Use FOL or its restricted subset to do the reasoning.
- Add actions to the plan sequence wherever and whenever it is needed
 - Drop the need to construct solutions sequentially from the initial state.
- Apply divide and conquer strategies to sub-goals if these are independent.

Challenges:

- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation

Planning systems design.

Two planning systems designs:

- Situation calculus
 - based on the first-order logic,
 - a situation variable models new states of the world
 - use inference methods developed for FOL to do the reasoning
- STRIPS like planners
 - STRIPS Stanford research institute problem solver
 - Restricted language as compared to the situation calculus
 - Allows the design of more efficient planning algorithms

CS 1571 Intro to AI

Situation calculus

- Logic for reasoning about changes in the state of the world
- The world is described by:
 - Sequences of **situations** of the current state
 - Changes from one situation to another are caused by actions
- The situation calculus allows us to:
 - Describe the initial state and goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB implies the goal state
 - and thereby allow us to extract a plan

Situation calculus

Language:

- Special variables: s,a objects of type situation and action
- Action functions that return actions.
 - E.g. Move(A, TABLE, B) represents a move action
 - Move(x,y,z) represents an action schema
- Two special function symbols of type situation
 - $-s_0$ initial situation
 - -DO(a,s) denotes the situation obtained after performing an action a in situation s
- Situation-dependent functions and relations (also called fluents)
 - **Relation:** On(x,y,s) object x is on object y in situation s;
 - Function: Above(x,s) object that is above x in situation s.

CS 1571 Intro to AI

Situation calculus. Blocks world example. Α В В \mathbf{C} Α \mathbf{C} Initial state Goal On(A,B,s) $On(A, Table, s_0)$ $On(B, Table, s_0)$ On(B,C,s) $On(C, Table, s_0)$ On(C, Table, s)Clear(A, s_0) Clear(B, s_0) Clear(C, s_0) Clear(Table, s_0)

Blocks world example. В В C C **Initial state** Goal On(A,B,s) $On(A, Table, s_0)$ On(B,C,s) $On(B, Table, s_0)$ On(C, Table, s) $On(C, Table, s_0)$ $Clear(A, s_0)$ **Note:** It is not necessary that Clear(B, s_0) the goal describes all relations $Clear(C, s_0)$ Clear(A, s)Clear(Table, s_0) CS 1571 Intro to AI

Knowledge about the world. Axioms.

Knowledge in the KB

• represents changes in the world due to actions.

Two types of axioms:

- Effect axioms
 - changes in situations that result from actions
- Frame axioms
 - things preserved from the previous situation

CS 1571 Intro to AI

Blocks world example. Effect axioms.

Effect axioms:

Moving x from y to z. MOVE(x, y, z)

Effect of move changes on On relations

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))$$

Effect of move changes on Clear relations

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table)$$

 $\rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))$

Blocks world example. Frame axioms.

- Frame axioms.
 - Represent things that remain unchanged after an action.

On relations:

$$On(u,v,s) \land (u \neq x) \land (v \neq y) \rightarrow On(u,v,DO(MOVE(x,y,z),s))$$

Clear relations:

$$Clear(u, s) \land (u \neq z) \rightarrow Clear(u, DO(MOVE(x, y, z), s))$$

CS 1571 Intro to AI

Planning in situation calculus.

Planning problem:

• find a sequence of actions that lead to a goal

Planning in situation calculus is converted to theorem proving.

Goal state:

$$\exists s \ On(A,B,s) \land On(B,C,s) \land On(C,Table,s)$$

- Inference approaches:
 - Inference rule approach
 - Conversion to SAT problem
- Plan (solution) is a byproduct of theorem proving.
- Example: blocks world

Planning in a blocks world.

A B C

A B C

Initial state

 $On(A, Table, s_0)$ $On(B, Table, s_0)$ $On(C, Table, s_0)$ $Clear(A, s_0)$ $Clear(B, s_0)$ $Clear(C, s_0)$

Clear(Table, s_0)

Goal

On(A,B, s) On(B,C, s)On(C,Table, s)

CS 1571 Intro to AI

Planning in the blocks world.

 $\begin{array}{lll} s_{0} = & & & & & & & & \\ On(A, Table \,, s_{0}) & & & Clear \, (A, s_{0}) & & Clear \, (Table \,, s_{0}) \\ On(B, Table \,, s_{0}) & & & Clear \, (B, s_{0}) \\ On(C, Table \,, s_{0}) & & & Clear \, (C, s_{0}) \end{array}$

Action: MOVE(B, Table, C) $s_1 = DO(MOVE(B, Table, C), s_0)$

?

Planning in the blocks world.

$$\begin{array}{lll} s_{0} = & & & & & & & & \\ On(A, Table \,, s_{0}) & & & Clear \, (A, s_{0}) & & Clear \, (Table \,, s_{0}) \\ On(B, Table \,, s_{0}) & & & Clear \, (B, s_{0}) \\ On(C, Table \,, s_{0}) & & & Clear \, (C, s_{0}) \end{array}$$

Action:
$$MOVE(B, Table, C)$$

 $s_1 = DO(MOVE(B, Table, C), s_0)$
 $On(A, Table, s_1)$
 $On(B, C, s_1)$
 $\neg On(B, Table, s_1)$
 $On(C, Table, s_1)$
 $On(C, Table, s_1)$
 $Clear(A, s_1)$
 $Clear(B, s_1)$
 $Clear(C, s_1)$

Planning in the blocks world.

Planning in situation calculus.

CS 1571 Intro to AI

Planning problem:

- find a sequence of actions that lead to a goal
- Planning in situation calculus is converted to theorem proving.
- Problems:
 - Large search space
 - Large number of axioms to be defined for one action
 - Proof may not lead to the best (shortest) plan.

Frame problem

Frame problem refers to:

• The need to represent a large number of frame axioms **Solution:** combine positive and negative effects in one rule

$$On(u, v, DO(MOVE(x, y, z), s)) \Leftrightarrow (\neg((u = x) \land (v = y)) \land On(u, v, s)) \lor \lor (((u = x) \land (v = z)) \land On(x, y, s) \land Clear(x, s) \land Clear(z, s))$$

Inferential frame problem:

- We still need to derive properties that remain unchanged

Other problems:

- Qualification problem enumeration of all possibilities under which an action holds
- Ramification problem enumeration of all inferences that follow from some facts

CS 1571 Intro to AI

STRIPS representation.

- More restricted representation language as compared to the situation calculus
- States:
 - represent facts that are true at a specific point in time conjunction of literals, e.g. On(A,B), On(B,Table), Clear(A)
- Actions (operators):

Operator: Move (x,y,z)

- **Preconditions:** On(x,y), Clear(x), Clear(z)
- Effect lists:
 - Add list: On(x,z), Clear(y)
 - **Delete list:** On(x,y), Clear(z) (Everything else is unaffected)
- Goals: conjunctions of literals, e.g. On(A,B), On(B,C),

STRIPS representation. Benefits.

Benefits:

- States, actions and goals have structure
- Action representation:
 - Leads to more intuitive and compact description of actions (no need to write many axioms !!!)
 - Avoids the frame problem
- Restrictions lead to more efficient planning algorithms.

STRIPS planning:

- find a sequence of operators from the initial state to the goal
- Search problem definition in STRIPS looks much like the standard search problem definition

STRIPS planning.

STRIPS planning problem:

- Find a sequence of actions that lead to a goal
- States and goals are defined by a conjunctions of literals

Two basic search methods:

- Forward search (goal progression)
 - From the initial state try to reach the goal
- Backward search (goal regression)
 - Start from the goal and try to project it to the initial state

More complex planning method:

- Partial-order planning (POP)
 - Search the space of partially build plans

CS 1571 Intro to AI

Forward search (goal progression)

- **Idea:** Given a state s
 - Unify the preconditions of some operator a with s
 - Add and delete sentences from the add and delete list of an operator a from s to get a new state

Backward search (goal regression)

- Use operators to generate new goal conditions
- Check whether the initial state satisfies the current goal

Search tree:

