First order logic

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administration

• PS-4:
 – Due today
• PS-5
 – Out today
 – Propositional and First-order Logic
Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them.

Propositional logic:

- Represents statements about the world without reflecting this structure and without modeling these entities explicitly.

Consequence:

- Some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain
 For inferences we need:

 \[
 \begin{align*}
 John & & is & & older & & than & & Mary & & \wedge & & Mary & & is & & older & & than & & Paul \\
 \Rightarrow & & John & & is & & older & & than & & Paul \\
 Jane & & is & & older & & than & & Mary & & \wedge & & Mary & & is & & older & & than & & Paul \\
 \Rightarrow & & Jane & & is & & older & & than & & Paul
 \end{align*}
 \]

- Problem: if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

\[
\begin{align*}
PersA & & is & & older & & than & & PersB & & \wedge & & PersB & & is & & older & & than & & PersC \\
\Rightarrow & & PersA & & is & & older & & than & & PersC
\end{align*}
\]
Limitations of propositional logic

- **Statements referring to groups of objects require exhaustive enumeration of objects**

- **Example:**
 Assume we want to express *Every student likes vacation*

 Doing this in propositional logic would require to include statements about every student

 \[\text{John likes vacation} \land \text{Mary likes vacation} \land \text{Ann likes vacation} \land \ldots \]

- **Solution:** Allow quantification in statements

First-order logic (FOL)

- More expressive than propositional logic

- **Eliminates deficiencies of PL by:**
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing quantification statements over objects without the need to represent each of them separately
Logic

Logic is defined by:

• A set of sentences
 – A sentence is constructed from a set of primitives according to syntax rules.

• A set of interpretations
 – An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.

• The valuation (meaning) function V
 – Assigns a truth value to a given sentence under some interpretation

$$V : \text{sentence} \times \text{interpretation} \rightarrow \{\text{True}, \text{False}\}$$

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:

• Constant symbols:
 – E.g. John, France, car89

• Variables:
 – E.g. x,y,z

• Functions applied to one or more terms
 – E.g. father-of (John)

 $$\text{father-of(father-of(John))}$$
First order logic. Syntax.

Sentences in FOL:
• Atomic sentences:
 – A predicate symbol applied to 0 or more terms
 Examples:
 Red(car12),
 Sister(Amy, Jane);
 Manager(father-of(John));

 – t1 = t2 equivalence of terms
 Example:
 John = father-of(Peter)

• Complex sentences:
 – Assume ϕ, ψ are sentences. Then:
 \[
 (\phi \land \psi) \quad (\phi \lor \psi) \quad (\phi \Rightarrow \psi) \quad (\phi \Leftrightarrow \psi) \quad \neg \psi
 \]
 and
 \[
 \forall x \phi \quad \exists y \phi
 \]
 are sentences

Symbols \exists, \forall
- stand for the existential and the universal quantifier
Semantics. Interpretation.

An interpretation \(I \) is defined by a domain and a mapping

- **domain \(D \):** a set of objects in the world we represent;
 domain of discourse;

An interpretation \(I \) maps:

- Constant symbols to objects in \(D \)

 \[
 I(John) = \overline{\text{John}}
 \]

- Predicate symbols to relations, properties on \(D \)

 \[
 I(\text{brother}) = \begin{Bmatrix}
 \langle \overline{\text{John}} \overline{\text{Paul}} \rangle; \langle \overline{\text{Paul}} \overline{\text{John}} \rangle; \ldots
 \end{Bmatrix}
 \]

- Function symbols to functional relations on \(D \)

 \[
 I(\text{father-of}) = \begin{Bmatrix}
 \langle \overline{\text{John}} \rangle \rightarrow \overline{\text{Paul}}; \langle \overline{\text{Paul}} \rangle \rightarrow \overline{\text{John}}; \ldots
 \end{Bmatrix}
 \]

Semantics of sentences.

Meaning (evaluation) function:

\[
V: \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True}, \text{False} \}
\]

A **predicate** \(\text{predicate}(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n}) \) is true for the interpretation \(I \), iff the objects referred to by \(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n} \) are in the relation referred to by \(\text{predicate} \)

\[
I(John) = \overline{\text{John}} \quad I(Paul) = \overline{\text{Paul}}
\]

\[
I(\text{brother}) = \begin{Bmatrix}
\langle \overline{\text{John}} \overline{\text{Paul}} \rangle; \langle \overline{\text{Paul}} \overline{\text{John}} \rangle; \ldots
\end{Bmatrix}
\]

\[
\text{brother}(John, Paul) = \langle \overline{\text{John}} \overline{\text{Paul}} \rangle \quad \text{in } I(\text{brother})
\]

\[
V(\text{brother}(John, Paul), I) = \text{True}
\]
Semantics of sentences.

• **Equality**
 \[V(\text{term-1} = \text{term-2}, I) = \text{True} \]
 Iff \[I(\text{term-1}) = I(\text{term-2}) \]

• **Boolean expressions:** standard

 E.g. \[V(\text{sentence-1} \lor \text{sentence-2}, I) = \text{True} \]
 Iff \[V(\text{sentence-1}, I) = \text{True} \text{ or } V(\text{sentence-2}, I) = \text{True} \]

• **Quantifications**

 \[V(\forall x \phi, I) = \text{True} \]
 Iff for all \(d \in D \) \[V(\phi, I[x/d]) = \text{True} \]

 \[V(\exists x \phi, I) = \text{True} \]
 Iff there is a \(d \in D \), s.t. \[V(\phi, I[x/d]) = \text{True} \]

Examples of sentences with quantifiers

• **Universal quantification**

 All Upitt students are smart
 \[\forall x \text{ student}(x) \land \text{at}(x, \text{Upitt}) \Rightarrow \text{smart}(x) \]

 Typically the universal quantifier connects with an implication

• **Existential quantification**

 Someone at CMU is smart
 \[\exists x \text{ at}(x, \text{CMU}) \land \text{smart}(x) \]

 Typically the existential quantifier connects with a conjunction
Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all x and y, if x is a parent of y then y is a child of x

 \[
 \forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)
 \]

 \[
 \forall y, x \text{ parent } (x, y) \Rightarrow \text{child } (y, x)
 \]

- **Order of different quantifiers changes the meaning**

 \[
 \forall x \exists y \text{ loves } (x, y)
 \]

Order of quantifiers

- **Order of quantifiers of the same type does not matter**

 For all x and y, if x is a parent of y then y is a child of x

 \[
 \forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)
 \]

 \[
 \forall y, x \text{ parent } (x, y) \Rightarrow \text{child } (y, x)
 \]

- **Order of different quantifiers changes the meaning**

 Everybody loves somebody

 \[
 \forall x \exists y \text{ loves } (x, y)
 \]

 \[
 \exists y \forall x \text{ loves } (x, y)
 \]
Order of quantifiers

• Order of quantifiers of the same type does not matter
 For all x and y, if x is a parent of y then y is a child of x
 \(\forall x, y \) parent \((x, y)\) \(\Rightarrow\) child \((y, x)\)
 \(\forall y, x \) parent \((x, y)\) \(\Rightarrow\) child \((y, x)\)

• Order of different quantifiers changes the meaning
 \(\forall x \exists y \) loves \((x, y)\)
 Everybody loves somebody
 \(\exists y \forall x \) loves \((x, y)\)
 There is someone who is loved by everyone

Connections between quantifiers

Everyone likes ice cream
Connections between quantifiers

Everyone likes ice cream

\[\forall x \text{ likes } (x, \text{IceCream }) \]

Is it possible to convey the same meaning using an existential quantifier?
Connections between quantifiers

Everyone likes ice cream

$$\forall x \text{ likes (} x, \text{ IceCream } \)$$

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

$$\neg \exists x \neg \text{ likes (} x, \text{ IceCream } \)$$

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

Connections between quantifiers

Someone likes ice cream

?
Connections between quantifiers

Someone likes ice cream

\(\exists x \text{ likes } (x, \text{IceCream}) \)

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

\(\neg \forall x \neg \text{ likes } (x, \text{IceCream}) \)

An existential quantifier in the sentence can be expressed using a universal quantifier !!!
Representing knowledge in FOL

Example:

Kinship domain

- **Objects:** people
 - John, Mary, Jane, …
- **Properties:** gender
 - Male (x), Female (x)
- **Relations:** parenthood, brotherhood, marriage
 - Parent (x, y), Brother (x, y), Spouse (x, y)
- **Functions:** mother-of (one for each person x)
 - MotherOf (x)

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

- Male and female are disjoint categories
- Parent and child relations are inverse
- A grandparent is a parent of parent
- A sibling is another child of one’s parents
- And so on ….
Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories
 \(\forall x \ Male (x) \Leftrightarrow \lnot Female (x) \)

• Parent and child relations are inverse
 \(\forall x, y \ Parent (x,y) \Leftrightarrow Child (y,x) \)

• A grandparent is a parent of parent

• A sibling is another child of one’s parents

• And so on
Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories
 \(\forall x \ Male (x) \iff \neg Female (x) \)

• Parent and child relations are inverse
 \(\forall x, y \ Parent (x, y) \iff Child (y, x) \)

• A grandparent is a parent of parent
 \(\forall g, c \ Grandparent(g, c) \iff \exists p \ Parent(g, p) \land Parent(p, c) \)

• A sibling is another child of one’s parents
 \(\forall x, y \ Sibling (x, y) \iff (x \neq y) \land \exists p \ Parent (p, x) \land Parent (p, y) \)

• And so on ….
Logical inference in FOL

Logical inference problem:
- Given a knowledge base KB (a set of sentences) and a sentence α, does the KB semantically entail α?

$$KB \models \alpha ?$$

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is undecidable !!! No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

Truth table approach

- **Is it possible to modify the truth table approach also to the first-order logic (FOL)?**
- **Truth table approach:**
 - Generate all interpretations
 - Find the ones for which the KB evaluates to true
 - Check whether the theorem evaluates to true for all KB consistent interpretations
Inference rules approach

Advantage: Does not generate all possible interpretations

- Inference rules from the propositional logic:
 - Modus ponens \[\frac{A \rightarrow B, \ A}{B} \]
 - Resolution \[\frac{A \lor B, \ \neg B \lor C}{A \lor C} \]

 - and others: And-introduction, And-elimination, Or-introduction, Negation elimination

- Additional inference rules are needed for sentences with quantifiers and variables
 - Must involve variable substitutions

Sentences with variables

First-order logic sentences can include variables.

- **Variable** is:
 - **Bound** – if it is in the scope of some quantifier
 \[\forall x \ P(x) \]
 - **Free** – if it is not bound.
 \[\exists x \ P(y) \land Q(x) \quad y \text{ is free} \]

- **Sentence** (formula) is:
 - **Closed** – if it has no free variables
 \[\forall y \exists x \ P(y) \Rightarrow Q(x) \]
 - **Open** – if it is not closed
 - **Ground** – if it does not have any variables
 \[\text{Likes}(John, Jane) \]
Variable substitutions

- Variables in the sentences can be substituted with terms.
 \(\text{terms} = \text{constants, variables, functions} \)

- **Substitution:**
 - Is represented by a mapping from variables to terms
 \[\{x_1 / t_1, x_2 / t_2, \ldots \} \]
 - Application of the substitution to sentences
 \[\text{SUBST} \{ x / Sam, y / Pam \}, \text{Likes}(x, y) \} = \text{Likes}(Sam, Pam) \]
 \[\text{SUBST} \{ x / z, y / \text{fatherof}(John) \}, \text{Likes}(x, y) \} = \text{Likes}(z, \text{fatherof}(John)) \]

Inference rules for quantifiers

- **Universal elimination**
 \[\frac{\forall x \, \phi(x)}{\phi(a)} \quad a - \text{is a constant symbol} \]
 - Substitutes a variable with a constant symbol
 \[\forall x \, \text{Likes}(x, \text{IceCream}) \quad \text{Likes}(Ben, \text{IceCream}) \]

- **Existential elimination.**
 \[\frac{\exists x \, \phi(x)}{\phi(a)} \]
 - Substitutes a variable with a constant symbol that does not appear elsewhere in the KB
 \[\exists x \, \text{Kill}(x, \text{Victim}) \quad \text{Kill}(\text{Murderer}, \text{Victim}) \]
Inference rules for quantifiers

- **Universal instantiation (introduction)**
 \[
 \frac{\phi}{\forall x \phi}
 \]
 \(x\) – is not free in \(\phi\)
 - Introduces a universal variable which does not affect \(\phi\) or its assumptions
 \[
 \text{Sister}(Amy, Jane) \quad \forall x \text{Sister}(Amy, Jane)
 \]

- **Existential instantiation (introduction)**
 \[
 \frac{\phi(a)}{\exists x \phi(x)}
 \]
 \(a\) – is a ground term in \(\phi\)
 \(x\) – is not free in \(\phi\)
 - Substitutes a ground term in the sentence with a variable and an existential statement
 \[
 \text{Likes}(Ben, IceCream) \quad \exists x \text{Likes}(x, IceCream)
 \]

Unification

- **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms
 \[
 \frac{\forall x \phi(x)}{\phi(a)}
 \]
 \(a\) - is a constant symbol

- **Solution:** Try substitutions that may help
 - Use substitutions of “similar” sentences in KB

- **Unification** – takes two similar sentences and computes the substitution that makes them look the same, if it exists
 \[
 \text{UNIFY} \ (p, q) = \sigma \quad \text{s.t.} \ \text{SUBST} (\sigma, p) = \text{SUBST} (\sigma, q)
 \]
Unification. Examples.

- **Unification:**
 \[\text{UNIFY} (p, q) = \sigma \quad \text{s.t.} \quad \text{SUBST}(\sigma, p) = \text{SUBST}(\sigma, q) \]

- **Examples:**
 \[\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(\text{John}, \text{Jane})) = \{x / \text{Jane}\} \]
 \[\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(y, \text{Ann})) = ? \]
Unification. Examples.

• **Unification:**

 \[UNIFY(p, q) = \sigma \text{ s.t. \textit{SUBST}(\sigma, p) = \textit{SUBST}(\sigma, q)} \]

• **Examples:**

 \[UNIFY(\text{Knows}(John, x), \text{Knows}(John, Jane)) = \{x / Jane\} \]

 \[UNIFY(\text{Knows}(John, x), \text{Knows}(y, Ann)) = \{x / Ann, y / John\} \]

 \[UNIFY(\text{Knows}(John, x), \text{Knows}(y, \text{MotherOf}(y))) \]
 \[= \{x / \text{MotherOf}(John), y / John\} \]

 \[UNIFY(\text{Knows}(John, x), \text{Knows}(x, Elizabeth)) = \text{fail} \]