CS 1571 Introduction to AI Lecture 12

First order logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to AI

Administration

- **PS-4**:
 - Due today
- PS-5
 - Out today
 - Propositional and First-order Logic

Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:

• Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

CS 1571 Intro to AI

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- **Example:** Seniority of people domain

For inferences we need:

John is older than Mary ∧ Mary is older than Paul ⇒ John is older than Paul Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

<u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u> \Rightarrow <u>PersA</u> is older than <u>PersC</u>

Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation \(\text{Mary likes vacation} \) \(\text{Ann likes vacation} \(\text{\chi} \)

• Solution: Allow quantification in statements

CS 1571 Intro to AI

First-order logic (FOL)

- More expressive than propositional logic
- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing quantification statements over objects without the need to represent each of them separately

Logic

Logic is defined by:

- · A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- The valuation (meaning) function V
 - Assigns a truth value to a given sentence under some interpretation

```
V: sentence \times interpretation \rightarrow \{True, False\}
```

CS 1571 Intro to AI

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:

- Constant symbols:
 - E.g. John, France, car89
- Variables:
 - E.g. x,y,z
- Functions applied to one or more terms
 - E.g. father-of (John)father-of(father-of(John))

First order logic. Syntax.

Sentences in FOL:

- Atomic sentences:
 - A predicate symbol applied to 0 or more terms

Examples:

```
Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));
```

- t1 = t2 equivalence of terms

Example:

John = father-of(Peter)

CS 1571 Intro to AI

First order logic. Syntax.

Sentences in FOL:

- Complex sentences:
- Assume ϕ , ψ are sentences. Then:

-
$$(\phi \land \psi)$$
 $(\phi \lor \psi)$ $(\phi \Rightarrow \psi)$ $(\phi \Leftrightarrow \psi) \neg \psi$ and

$$- \forall x \phi \quad \exists y \phi$$
 are sentences

Symbols \exists, \forall

- stand for the existential and the universal quantifier

Semantics. Interpretation.

An interpretation I is defined by a **domain** and a **mapping**

 domain D: a set of objects in the world we represent; domain of discourse;

An interpretation I maps:

- Constant symbols to objects in D I(John) =
- Predicate symbols to relations, properties on D $I(\textit{brother}) = \left\{ \left\langle \stackrel{\frown}{\mathcal{R}} \stackrel{\frown}{\mathcal{R}} \right\rangle; \left\langle \stackrel{\frown}{\mathcal{R}} \stackrel{\frown}{\mathcal{T}} \right\rangle; \dots \right\}$
- Function symbols to functional relations on D $I(\textit{father-of}) = \left\{ \left\langle \stackrel{\frown}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\frown}{\mathcal{T}} ; \left\langle \stackrel{\frown}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\frown}{\mathcal{T}} ; \dots \right\}$

CS 1571 Intro to AI

Semantics of sentences.

Meaning (evaluation) function:

 $V : sentence \times interpretation \rightarrow \{True, False\}$

A **predicate** *predicate*(*term-1*, *term-2*, *term-3*, *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, *term-3*, *term-n* are in the relation referred to by *predicate*

V(brother(John, Paul), I) = True

Semantics of sentences.

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- · Boolean expressions: standard

E.g.
$$V(sentence-1 \ v \ sentence-2, I) = True$$

Iff $V(sentence-1,I) = True$ or $V(sentence-2,I) = True$

Quantifications

$$V(\forall x \ \phi \ , I) = \textbf{True}$$
 substitution of x with d

Iff for all $d \in D$ $V(\phi, I[x/d]) = \textbf{True}$
 $V(\exists x \ \phi \ , I) = \textbf{True}$

Iff there is a $d \in D$, s.t. $V(\phi, I[x/d]) = \textbf{True}$

CS 1571 Intro to AI

Examples of sentences with quantifiers

• Universal quantification

All Upitt students are smart
$$\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$$

Typically the universal quantifier connects with an implication

• Existential quantification

Someone at CMU is smart
$$\exists x \ at(x,CMU) \land smart(x)$$

Typically the existential quantifier connects with a conjunction

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

CS 1571 Intro to AI

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

Everybody loves somebody

$$\exists y \forall x \ loves \ (x, y)$$

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x $\forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$ $\forall y, x \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$

· Order of different quantifiers changes the meaning

 $\forall x \exists y \ loves \ (x, y)$ Everybody loves somebody

 $\exists y \forall x \ loves \ (x, y)$

There is someone who is loved by everyone

CS 1571 Intro to AI

Connections between quantifiers

Everyone likes ice cream

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes \ (x, IceCream)$

CS 1571 Intro to AI

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using an existential quantifier?

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes (x, IceCream)$

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

 $\neg \exists x \neg likes (x, IceCream)$

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

CS 1571 Intro to AI

Connections between quantifiers

Someone likes ice cream

•

Connections between quantifiers

Someone likes ice cream

```
\exists x \ likes \ (x, IceCream)
```

Is it possible to convey the same meaning using a universal quantifier?

CS 1571 Intro to AI

Connections between quantifiers

Someone likes ice cream

```
\exists x \ likes \ (x, IceCream)
```

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

```
\neg \forall x \neg likes (x, IceCream)
```

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John, Mary, Jane, ...

Properties: gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• Functions: mother-of (one for each person x)

Mother Of(x)

CS 1571 Intro to AI

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

- Male and female are disjoint categories
- Parent and child relations are inverse
- A grandparent is a parent of parent
- A sibling is another child of one's parents
- And so on

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

 $\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$

- Parent and child relations are inverse
- A grandparent is a parent of parent
- A sibling is another child of one's parents
- And so on

CS 1571 Intro to AI

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

Male and female are disjoint categories

 $\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$

· Parent and child relations are inverse

 $\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$

- A grandparent is a parent of parent
- A sibling is another child of one's parents
- And so on

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

· Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

• A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

- A sibling is another child of one's parents
- And so on

CS 1571 Intro to AI

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

• A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

And so on

Logical inference in FOL

Logical inference problem:

• Given a knowledge base KB (a set of sentences) and a sentence α , does the KB semantically entail α ?

$$KB \models \alpha$$
 ?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is undecidable !!!. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

CS 1571 Intro to AI

Truth table approach

- Is it possible to modify the truth table approach also to the first-order logic (FOL)?
- Truth table approach:
 - Generate all interpretations
 - Find the ones for which the KB evaluates to true
 - Check whether the theorem evaluates to true for all KB consistent interpretations

Inference rules approach

Advantage: Does not generate all possible interpretations

- Inference rules from the propositional logic:
 - Modus ponens

$$\frac{A \Rightarrow B, \quad A}{R}$$

- Resolution

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

- and others: And-introduction, And-elimination, Orintroduction, Negation elimination
- Additional inference rules are needed for sentences with quantifiers and variables
 - Must involve variable substitutions

CS 1571 Intro to AI

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - **Bound** if it is in the scope of some quantifier

$$\forall x \ P(x)$$

− Free − if it is not bound.

$$\exists x \ P(y) \land Q(x)$$
 y is free

- **Sentence** (formula) is:
 - Closed if it has no free variables

$$\forall y \exists x \ P(y) \Rightarrow Q(x)$$

- Open if it is not closed
- Ground if it does not have any variables

Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)
- Substitution:
 - Is represented by a mapping from variables to terms $\{x_1/t_1, x_2/t_2, ...\}$
 - Application of the substitution to sentences

$$SUBST(\{x/Sam, y/Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$

 $SUBST(\{x/z, y/fatherof(John)\}, Likes(x, y)) =$
 $Likes(z, fatherof(John))$

CS 1571 Intro to AI

Inference rules for quantifiers

• Universal elimination

$$\frac{\forall x \ \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

- substitutes a variable with a constant symbol

 $\forall x \ Likes(x, IceCream)$ Likes(Ben, IceCream)

• Existential elimination.

$$\frac{\exists x \; \phi(x)}{\phi(a)}$$

 Substitutes a variable with a constant symbol that does not appear elsewhere in the KB

 $\exists x \ Kill(x, Victim)$ Kill(Murderer, Victim)

Inference rules for quantifiers

• Universal instantiation (introduction)

$$\frac{\phi}{\forall x \ \phi}$$
 $x - \text{is not free in } \phi$

– Introduces a universal variable which does not affect ϕ or its assumptions

$$Sister(Amy, Jane)$$
 $\forall x Sister(Amy, Jane)$

• Existential instantiation (introduction)

$$\frac{\phi(a)}{\exists x \phi(x)} \qquad a - \text{is a ground term in } \phi$$
$$x - \text{is not free in } \phi$$

 Substitutes a ground term in the sentence with a variable and an existential statement

$$Likes(Ben, IceCream)$$
 $\exists x \ Likes(x, IceCream)$

CS 1571 Intro to AI

Unification

• **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms

$$\frac{\forall x \, \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

- **Solution:** Try substitutions that may help
 - Use substitutions of "similar" sentences in KB
- Unification takes two similar sentences and computes the substitution that makes them look the same, if it exists

$$UNIFY\ (p,q) = \sigma \ \text{ s.t. } SUBST(\ \sigma,p) = SUBST\ (\sigma,q)$$

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x \mid Jane\}$$

 $UNIFY(Knows(John, x), Knows(y, Ann)) = ?$

CS 1571 Intro to AI

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= ?$

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= \{x / MotherOf(John), y / John\}$
 $UNIFY(Knows(John, x), Knows(x, Elizabeth)) = ?$

CS 1571 Intro to AI

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma,p) = SUBST(\sigma,q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x/Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x/Ann, y/John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= \{x/MotherOf(John), y/John\}$
 $UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail$