CS 1571 Introduction to AI Lecture 11

Propositional logic (cont). First order logic.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Administration

- **PS-4**:
 - Due on Thursday, October 2, 2003
 - Resolution-refutation covered today

Logical inference problem

Logical inference problem:

- · Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to AI

Truth-table approach

Problem: $KB \models \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols) and check

Example:

	KB			α	
P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
True	True	True	True	True	•
True	False	True	False	False	
False	True	True	False	False	
False	False	False	True	False	

Inference rules approach.

Motivation: we do not want to blindly generate and check all interpretations !!!

Inference rules:

- Represent sound inference patterns repeated in inferences
- Application of many inference rules allows us to infer new sound conclusions and hence prove theorems
- An example of an inference rule: Modus ponens

$$\begin{array}{cccc} \underline{A \Rightarrow B, & A} & & \longleftarrow & \text{premise} \\ \hline B & & \longleftarrow & \text{conclusion} \end{array}$$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- **1.** *P* ∧ *Q*
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- 4. *P* From 1 and And-elim
- 5. R From 2,4 and Modus ponens
- 6. Q From 1 and And-elim
- 7. $(Q \wedge R)$ From 5,6 and And-introduction
- 8. S From 7,3 and Modus ponens

Proved: S

Example. Inference rules approach.

Nondeterministic steps

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

1. $P \wedge Q$

 $P \Rightarrow R$

3. $(Q \wedge R) \Rightarrow S$

4. P From 1 and And-elim

5. R From 2,4 and Modus ponens

7. $(Q \wedge R)$ From 5,6 and And-introduction

8. S From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to AI

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- **Initial state**: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (*P*, *R*, *T*, *S*)
 - Values: *True*, *False*
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- Why is this important? All techniques developed for CSPs can be applied to solve the logical inference problem!!

CS 1571 Intro to AI

Logic inference problem and satisfiability

Inference problem:

• we want to show that a sentence α is entailed by KB

Satisfiability:

• The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- programs for solving **SAT problems** can be used to solve the inference problem
- SAT problem: logical formulae in CNF

Resolution rule

Resolution rule

• A sound inference rule that 'fits' the CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

A	В	С	$A \vee B$	$\neg B \lor C$	$A \lor C$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

CS 1571 Intro to AI

Resolution rule

Resolution rule

• sound inference rule that 'fits' the CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

- It is <u>complete (refutation complete)</u> for the logical inference problem in propositional logic
 - Repeated application of the resolution rule to a KB in CNF can be used to answer the logical inference problem $KB \models \alpha$
 - Uses refutation proofs to assure the completeness

Resolution.

Why refutation?

• Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:

We know: $(A \wedge B)$ We want to show: $(A \vee B)$

Resolution rule fails to derive it (incomplete ??)

Proof by contradiction:

- Disproving: KB, $\neg \alpha$
- Proves the entailment $KB = \alpha$
- Avoids the problem. How?

$$(A \wedge B) = (A \vee B)$$

CS 1571 Intro to AI

Resolution algorithm

Algorithm:

- 1. Convert KB to the CNF form;
- 2. Apply iteratively the resolution rule starting from

$$KB$$
, $\neg \alpha$ (in the CNF form)

- 3. Stop when:
 - Contradiction (empty clause) is reached:
 - $A, \neg A \rightarrow \emptyset$
 - proves the entailment.
 - No more new sentences can be derived
 - Rejects (disproves) the entailment.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ Theorem: S

CS 1571 Intro to AI

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem**: S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

KB:
$$P \ Q \ (\neg P \lor R) \ (\neg Q \lor \neg R \lor S)$$

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

$$P \ Q \ (\neg P \lor R) \ (\neg Q \lor \neg R \lor S) \ \neg S$$

CS 1571 Intro to AI

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

$$\begin{array}{cccc} P & Q & (\neg P \lor R) & (\neg Q \lor \neg R \lor S) & \neg S \\ \hline \\ R & & & \end{array}$$

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ Theorem: S

CS 1571 Intro to AI

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

Contradiction → {

Proved: S

CS 1571 Intro to AI

KB in restricted forms

• If the sentences in the KB are restricted to some special forms other sound inference rules may become complete

Example:

• Horn form (Horn normal form)

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Can be written also as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

- Modus ponens:
 - is the "universal "(complete) rule for the sentences in the Horn form

$$\frac{A \Rightarrow B, \quad A}{B} \qquad \qquad \frac{A_1 \wedge A_2 \wedge \ldots \wedge A_k \Rightarrow B, A_1, A_2, \ldots A_k}{B}$$

KB in Horn form

• Horn form: a clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

- Not all sentences in propositional logic can be converted into the Horn form
- KB in Horn normal form:
 - Two types of propositional statements:
 - Implications: called **rules** $(B \Rightarrow A)$
 - Propositional symbols: **facts** B
- Application of the modus ponens:
 - Infers new facts from previous facts

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to AI

Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B* F3: *D*

Theorem: E

CS 1571 Intro to AI

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

CS 1571 Intro to AI

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

Rule R2 is satisfied.

F5: *E*

Backward chaining example

- KB: R1: $A \wedge B \Rightarrow C$
 - R2: $C \wedge D \Rightarrow E$
 - R3: $C \wedge F \Rightarrow G$
 - F1: A
 - F2: *B*
 - F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to AI

Backward chaining example

- KB: R1: $A \wedge B \Rightarrow C$
 - R2: $C \wedge D \Rightarrow E$
 - R3: $C \wedge F \Rightarrow G$
 - F1: A
 - F2: *B*
 - F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

KB agents based on propositional logic

- Propositional logic allows us to build knowledge-based agents capable of answering queries about the world by infering new facts from the known ones
- Example: an agent for diagnosis of a bacterial disease

Facts: The stain of the organism is gram-positive

The growth conformation of the organism is chains

Rules: (If) The stain of the organism is gram-positive \land

The morphology of the organism is coccus \land The growth conformation of the organism is chains

(Then) ⇒ The identity of the organism is streptococcus

CS 1571 Intro to AI

Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:

• Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

Assume we have: *John is older than Mary*

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow John is older than Paul

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

What is the problem?

CS 1571 Intro to AI

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

Assume we have: John is older than Mary

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow *John is older than Paul*

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary \wedge Mary is older than Paul

 \Rightarrow Jane is older than Paul

Problem: KB grows large

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary A Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: ??

CS 1571 Intro to AI

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary ∧ Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

<u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u>

 \Rightarrow **PersA** is older than **PersC**

Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation \(\text{Mary likes vacation} \) \(\text{Ann likes vacation} \(\text{\chi} \)

• Solution: Allow quantification in statements

CS 1571 Intro to AI

First-order logic (FOL)

- More expressive than **propositional logic**
- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing quantification statements over objects without the need to represent each of them separately
- Predicate logic: first-order logic without the quantification fix