CS 1571 Introduction to AI Lecture 10

Propositional logic.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Administration

- Office hours for Tomas for September 26, 2003
 - -2:00pm-3:30pm
 - Only tomorrow, next week back on the regular schedule
- **PS-4**:
 - Material needed for Problem 2 and 3 is covered today

Knowledge-based agent

Knowledge base

Inference engine

- Knowledge base (KB):
 - A set of sentences that describe facts about the world in some formal (representational) language
 - Domain specific
- Inference engine:
 - A set of procedures that work upon the representational language and can infer new facts or answer KB queries
 - Domain independent

CS 1571 Intro to AI

Knowledge representation

- The **objective of knowledge representation** is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantic conventions

Many KB systems rely on some variant of logic

Propositional logic. Syntax

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - A set of propositional variables (propositional symbols):

Examples: P, Q, R, \dots or statements like:

Light in the room is on,

It rains outside, etc.

– A set of logical connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

- Sentences
 - Build from symbols

CS 1571 Intro to AI

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via logical connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$

are sentences

Semantic: interpretations

A **propositional symbol** (an atomic sentence) can stand for an arbitrary fact (statement) about the world

Examples: "Light in the room is on", "It rains outside", etc.

An interpretation:

- maps symbols to one of the two values: *True (T)*, or *False (F)*,
- the value depends on the world we want to describe

World 1:

I: Light in the room is on -> True, It rains outside -> False

World 2:

I': Light in the room is on -> False, It rains outside -> False

CS 1571 Intro to AI

Semantics: symbols and constants

• The **meaning (truth)** of the propositional symbol for a **specific interpretation** is given by its interpretation

V(Light in the room is on, I) = TrueV(Light in the room is on, I') = False

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding True, False value

$$V(True, \mathbf{I}) = True$$

$$V(False, \mathbf{I}) = False$$
For any interpretation \mathbf{I}

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the "standard" rules for combining logical sentences:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	True	True	False	True True True False	True	True False False True

CS 1571 Intro to AI

Entailment

• **Entailment** reflects the relation of one fact in the world following from the others

- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

Inference.

- Inference is a process by which conclusions are reached.
- · Our goal:

We want to implement the inference process on a computer !!!

- Assume an inference procedure *i* that
 - derives a sentence α from the KB: $KB \vdash_i \alpha$
- Important issue:
 - We need to assure that our inference procedure derives correct conclusions

CS 1571 Intro to AI

Sound and complete inference.

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_{i} \alpha$

Properties of the inference procedure:

• Soundness: An inference procedure is sound

If $KB \vdash_{i} \alpha$ then it is true that $KB \models \alpha$

Completeness: An inference procedure is complete

If $KB = \alpha$ then it is true that $KB = \alpha$

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

CS 1571 Intro to AI

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB \models \alpha$$
 ?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

Truth-table approach

Problem: $KB \models \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

F	Example	e:	K	В	α
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True False False	True False True False	True	True False False True	True False False False

CS 1571 Intro to AI

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

E :	xample	:	K	В	α
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True False False	True False True False	True	True False False True	True False False False

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

		K	(B	α	
P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
True	True	True	True	True	v
True	False	True	False	False	
False	True	True	False	False	
False	False	False	True	False	

CS 1571 Intro to AI

Truth-table approach

A two step procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \lor C$	$(B \vee \neg C)$	KB	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \vee C$	$(B \vee \neg C)$	KB	α
True True True True	True True False False	True False True False	True True True True	True True False True	True True False True	True True True True
False False False	True	True False True False	True False True False	True True False True	True False False False	True True False False

CS 1571 Intro to AI

Truth-table approach

$$KB = (A \lor C) \land (B \lor \neg C)$$
 $\alpha = (A \lor B)$

A	В	С	$A \lor C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True True
True True	True False	False True	True True	True False	True False	True
True	False	False	True	True	True	True
False False		True False	True False	True True	True False	True True
	False	True	True	False	False	False
False	False	False	False	True	False	False

KB entails α

 The truth-table approach is sound and complete for the propositional logic!!

Inference rules approach.

$$KB \models \alpha$$
 ?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

Idea: Can we check only entries for which KB is *True*? Solution: apply inference rules to sentences in the KB

Inference rules:

- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

CS 1571 Intro to AI

Inference rules for logic

Modus ponens

$$A \Rightarrow B$$
, A premise conclusion

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is **sound.**
 - We can prove this through the truth table.

A	В	$A \Rightarrow B$
False	False	True
False	True	True
True	False	False
True	True	True

Inference rules for logic

• And-elimination

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

• And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

Or-introduction

$$\frac{A_i}{A_1 \vee A_2 \vee \dots A_i \vee A_n}$$

CS 1571 Intro to Al

Inference rules for logic

- Elimination of double negation ____
- Unit resolution

$$\frac{A \vee B, \quad \neg A}{B}$$

A special case of

- Resolution
- $\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$
- All of the above inference rules **are sound.** We can prove this through the truth table, similarly to the **modus ponens** case.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- **1.** *P* ∧ *Q*
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4**. *P*
- **5.** *R*

From 2,4 and Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *F*
- **5.** *R*
- **6.** Q

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ Theorem: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- 5. R
- 7. $(Q \wedge R)$

From 5,6 and And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **5.** *R*
- 7. $(Q \wedge R)$
- **8.** S

$$\frac{A \Rightarrow B, \quad A}{B}$$

From 7,3 and Modus ponens

Proved: S

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- 4. P From 1 and And-elim
- 5. R From 2,4 and Modus ponens
- 6. Q From 1 and And-elim
- 7. $(Q \wedge R)$ From 5,6 and And-introduction
- 8. S From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to AI

Inference rules

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Does the problem look familiar?

Logic inferences and search

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Does the problem look familiar?

This is an instance of a search problem:

The truth-table method (from the search perspective):

blind enumeration and checking

CS 1571 Intro to AI

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- **Initial state**: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

Normal forms

Sentences in the propositional logic can be transformed into one of the normal forms. This can simplify the inferences.

Normal forms used:

Conjunctive normal form (CNF)

• conjunction of clauses (clauses include disjunctions of literals)

$$(A \lor B) \land (\neg A \lor \neg C \lor D)$$

Disjunctive normal form (DNF)

• Disjunction of terms (terms include conjunction of literals)

$$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$$

CS 1571 Intro to AI

Conversion to a CNF

Assume: $\neg (A \Rightarrow B) \lor (C \Rightarrow A)$

1. Eliminate \Rightarrow , \Leftrightarrow

$$\neg(\neg A \lor B) \lor (\neg C \lor A)$$

2. Reduce the scope of signs through **DeMorgan Laws** and double negation

$$(A \land \neg B) \lor (\neg C \lor A)$$

3. Convert to the CNF using the associative and distributive laws

$$(A \lor \neg C \lor A) \land (\neg B \lor \neg C \lor A)$$

and

$$(A \lor \neg C) \land (\neg B \lor \neg C \lor A)$$

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (*P*, *R*, *T*, *S*)
 - Values: *True*, *False*
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- Why is this important? All techniques developed for CSPs can be applied to solve the logical inference problem!!

CS 1571 Intro to AI

Relationship between the inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem