CS 1571 Introduction to AI Lecture 9

Propositional logic: Inference

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Administration

- PS-3 due today (before the class)
 - Report
 - Programs through ftp
- PS-4 is out
 - on the course web page
 - due next week on Tuesday, October 1, 2002
 - Report
 - Programs

Knowledge-based agent

Knowledge base

Inference engine

- Knowledge base (KB):
 - A set of sentences that describe facts about the world in some formal (representational) language
 - Domain specific
- Inference engine:
 - A set of procedures that work upon the representational language and can infer new facts or answer KB queries
 - Domain independent

CS 1571 Intro to AI

Knowledge representation

- The **objective of knowledge representation** is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantic conventions

Many KB systems rely on some variant of logic

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation $\rightarrow \{True, False\}$

CS 1571 Intro to AI

Types of logic

- Different types of logics possible:
 - Propositional logic
 - First-order logic
 - Temporal logic
 - Numerical constraints logic
 - Map-coloring logic

In the following:

- Propositional logic.
 - Formal language for making logical inferences
 - Foundations of **propositional logic**: George Boole (1854)

Propositional logic. Syntax

- Propositional logic P:
 - defines a language for symbolic reasoning

First step: define Syntax+interpretation+semantics of P Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - A set of propositional variables (propositional symbols):

Examples: P, Q, R, \dots or statements like:

Light in the room is on,

It rains outside, etc.

– A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 1571 Intro to AI

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$

are sentences

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

In the propositional logic the semantics is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

CS 1571 Intro to AI

Semantic: propositional symbols

A **propositional symbol** (an atomic sentence) can stand for an arbitrary fact (statement) about the world

Examples: "Light in the room is on", "It rains outside", etc.

- An **interpretation** maps symbols to one of the two values: *True (T)*, or *False (F)*, depending on whether the symbol is satisfied in the world
 - I: Light in the room is on -> True, It rains outside -> False
 - I': Light in the room is on -> False, It rains outside -> False
- The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

V(Light in the room is on, I) = TrueV(Light in the room is on, I') = False

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True,False* value

$$V(True, \mathbf{I}) = True$$

$$V(False, \mathbf{I}) = False$$
For any interpretation \mathbf{I}

CS 1571 Intro to AI

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the "standard" rules for combining logical sentences:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
True True	True False	False	False	True True	True False	True False
		True True	False False	True False	True True	False True

Some definitions

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	Valid sentence
P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

CS 1571 Intro to AI

Entailment

• **Entailment** reflects the relation of one fact in the world following from the others

- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

Sound and complete inference.

Inference is a process by which conclusions are reached. **Our goal:**

- We want to implement the inference process on a computer !! Assume an **inference procedure** *i* that
- derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

• **Soundness:** An inference procedure is **sound**

If $KB \vdash_{i} \alpha$ then it is true that $KB \models \alpha$

• Completeness: An inference procedure is complete

If $KB = \alpha$ then it is true that $KB = \alpha$

CS 1571 Intro to AI

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB = \alpha$$
?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to AI

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:			K	В	α
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True False False	True False True False	True	True False False True	True False False False

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:

		K	KB	α	
P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
True	True	True	True	True	/
True	False	True	False	False	
False	True	True	False	False	
False	False	False	True	False	

CS 1571 Intro to AI

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	С	$A \lor C$	$(B \vee \neg C)$	KB	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	С	$A \lor C$	$(B \lor \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

CS 1571 Intro to AI

Truth-table approach

$$KB = (A \lor C) \land (B \lor \neg C)$$
 $\alpha = (A \lor B)$

A	В	С	$A \vee C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True
True True	True False	False True	True True	True False	True False	True True
True	False	False	True	True	True	True
False	1	True	True	True	True	True -
False False	True False	False True	False True	True False	False False	True False
False	False	False	False	True	False	False

KB entails α

 The truth-table approach is sound and complete for the propositional logic!!

Inference rules approach.

$$KB = \alpha$$
?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

Idea: Can we check only entries for which KB is *True*? Solution: apply inference rules to sentences in the KB

Inference rules:

- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

CS 1571 Intro to AI

Inference rules for logic

Modus ponens

$$A \Rightarrow B$$
, A premise conclusion

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is **sound.**
 - We can prove this through the truth table.

A	В	$A \Rightarrow B$
False	False	True
False	True	True
True	False	False
True	True	True

Inference rules for logic

• And-elimination

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

• And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

Or-introduction

$$\frac{A_i}{A_1 \vee A_2 \vee \dots A_i \vee A_n}$$

CS 1571 Intro to AI

Inference rules for logic

- Elimination of double negation
- A
 - Unit resolution $A \vee B$, $\neg A$ B
- Resolution
- All of the above inference rules **are sound.** We can prove this through the truth table, similarly to the **modus ponens** case.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge \quad A_n}{A_i}$$

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- 5. R

From 2,4 and Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- 6. Q

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- 7. $(Q \wedge R)$

From 5,6 and And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

CS 1571 Intro to AI

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- 5. R
- **6.** Q
- 7. $(Q \wedge R)$
- 8. S

$$\frac{A \Rightarrow B, \quad A}{B}$$

From 7,3 and Modus ponens

Proved: S

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- 4. P From 1 and And-elim
- 5. R From 2,4 and Modus ponens
- 6. Q From 1 and And-elim
- 7. $(Q \wedge R)$ From 5,6 and And-introduction
- 8. S From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to AI

Inference rules

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Looks familiar?

Logic inferences and search

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Looks familiar?

This is an instance of a search problem:

Truth table method (from the search perspective):

blind enumeration and checking

CS 1571 Intro to AI

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- Initial state: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

Normal forms

Sentences in the propositional logic can be transformed into one of the normal forms. This can simplify the inferences.

Normal forms used:

Conjunctive normal form (CNF)

• conjunction of clauses (clauses include disjunctions of literals)

$$(A \lor B) \land (\neg A \lor \neg C \lor D)$$

Disjunctive normal form (DNF)

• Disjunction of terms (terms include conjunction of literals)

$$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$$

CS 1571 Intro to AI

Conversion to a CNF

Assume: $\neg (A \Rightarrow B) \lor (C \Rightarrow A)$

1. Eliminate \Rightarrow , \Leftrightarrow

$$\neg(\neg A \lor B) \lor (\neg C \lor A)$$

2. Reduce the scope of signs through DeMorgan Laws and double negation

$$(A \land \neg B) \lor (\neg C \lor A)$$

3. Convert to CNF using the associative and distributive laws

$$(A \lor \neg C \lor A) \land (\neg B \lor \neg C \lor A)$$

and

$$(A \lor \neg C) \land (\neg B \lor \neg C \lor A)$$

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (P, R, T, S)
 - Values: True, False
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- All techniques developed for CSPs can be applied to solve the logical inference problem !!

CS 1571 Intro to AI

Relationship between inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem

Universal inference rule: Resolution rule

Sometimes inference rules can be combined into a single rule Resolution rule

- sound inference rule that works for CNF
- It is complete for propositional logic (refutation complete)

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

A	В	C	$A \vee B$	$\neg B \lor C$	$A \vee C$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	<u>False</u>	<u>True</u>	True	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

CS 1571 Intro to AI

Universal rule: Resolution.

Initial obstacle:

 Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:

We know: $(A \land B)$ We want to show: $(A \lor B)$

Resolution rule fails to derive it (incomplete ??)

A trick to make things work:

- proof by contradiction
 - Disproving: $KB , \neg \alpha$
 - Proves the entailment $KB = \alpha$

Resolution algorithm

Algorithm:

- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from KB, $\neg \alpha$ (in CNF form)
- Stop when:
 - Contradiction (empty clause) is reached:
 - $A, \neg A \rightarrow \emptyset$
 - proves entailment.
 - No more new sentences can be derived
 - disproves it.

CS 1571 Intro to AI

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

KB:
$$P Q (\neg P \lor R) (\neg Q \lor \neg R \lor S)$$

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

Proved: S

CS 1571 Intro to AI

Horn clauses

A special type of clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Can be written also as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

- Two types of propositional statements:
 - Implications: called **rules** $(B \Rightarrow A)$
 - Propositional symbols: facts

Modus ponens:

• is the "universal "(complete) rule for the sentences in the Horn form

$$\frac{A \Rightarrow B, \quad A}{B} \qquad \qquad \frac{A_1 \land A_2 \land \dots \land A_k \Rightarrow B, A_1, A_2, \dots A_k}{B}$$

Forward and backward chaining

Two inference procedures based on modus ponens for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

CS 1571 Intro to AI

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A F2: B F3: D

Theorem: E

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3· $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

Rule R2 is satisfied.

F5: *E*

CS 1571 Intro to AI

Backward chaining example

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only