CS 1571 Introduction to AI Lecture 8

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to AI

Game search

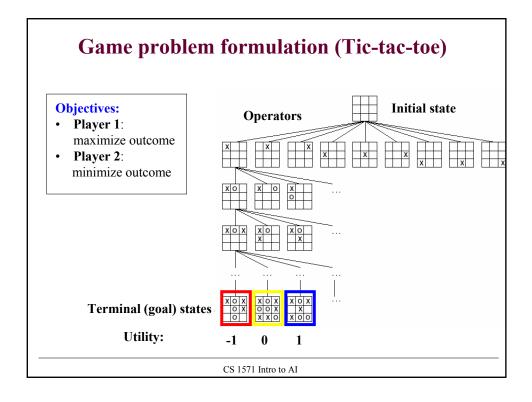
Game search problem

• Game problem formulation:

- Initial state: initial board position + info whose move it is
- Operators: legal moves a player can make
- Goal (terminal test): determines when the game is over
- Utility (payoff) function: measures the outcome of the game and its desirability

• Search objective:

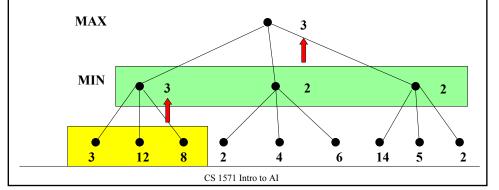
- find the sequence of player's decisions (moves) maximizing its utility (payoff)
- Consider the opponent's moves and their utility

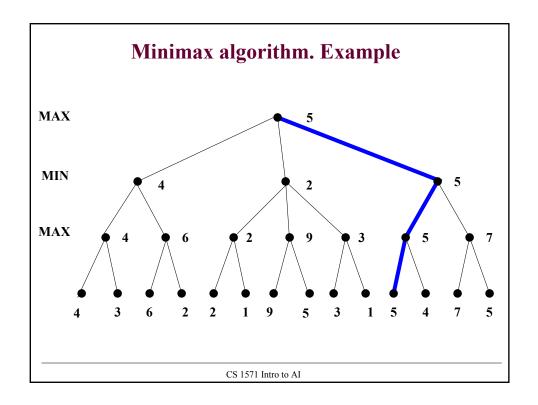


Minimax algorithm

How to deal with the contingency problem?

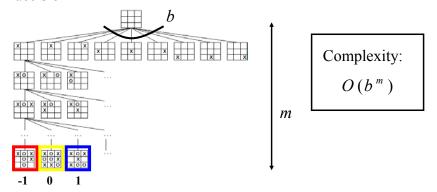
- Assuming that the opponent is rational and always optimizes its behavior (opposite to us) we consider the best opponent's response
- Then the minimax algorithm determines the best move





Complexity of the minimax algorithm

We need to explore the complete game tree before making the decision



- Impossible for large games
 - Chess: 35 operators, game can have 50 or more moves

CS 1571 Intro to AI

Solution to the complexity problem

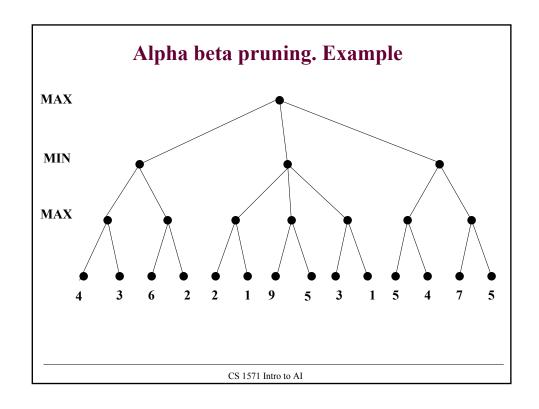
Two solutions:

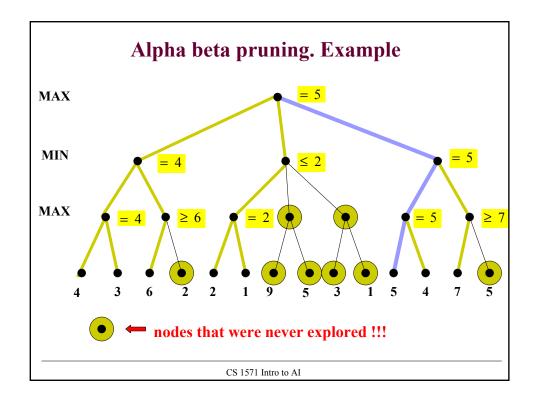
- 1. Dynamic pruning of redundant branches of the search tree
 - identify provably suboptimal branch of the search tree even before it is fully explored
 - Cutoff the suboptimal branch

Procedure: Alpha-Beta pruning

2. Early cutoff of the search tree

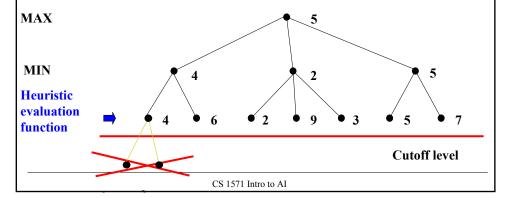
uses imperfect minimax value estimate of non-terminal states.





Search tree cuttoffs

- Idea:
 - Cutoff the search tree before the terminal state is reached
 - Use imperfect estimate of the minimax value at leaves
 - Heuristic evaluation function
 - Select one move repeat before every move



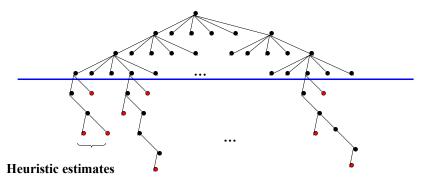
Heuristic evaluation functions

- Gives a **heuristic estimate** of the value for a sub-tree
- Example of a heuristic functions:
 - Material advantage in chess, checkers
 - Gives a value to every piece on the board, its position and combines them
 - More general feature-based evaluation function
 - Typically a linear evaluation function:

$$f(s) = f_1(s)w_1 + f_2(s)w_2 + \dots f_k(s)w_k$$
$$f_i(s) - \text{a feature of a state } s$$
$$w_i - \text{feature weight}$$

Evaluation functions

- Even better heuristic estimate of the value for a sub-tree
- Restricted set of moves to be considered under the cutoff level
 - reduces branching and improves the evaluation function
 - Example: consider only the capture moves in chess



CS 1571 Intro to AI

Knowledge representation:

Propositional logic

Knowledge-based agent

Knowledge base

Inference engine

Knowledge base (KB):

- A set of sentences that describe facts about the world in some formal (representational) language
- Domain specific

• Inference engine:

- A set of procedures that work upon the representational language and can infer new facts or answer KB queries
- Domain independent

CS 1571 Intro to AI

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge base represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

If

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

• Inference engine:

 manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic

CS 1571 Intro to AI

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

Example of logic

Language of numerical constraints:

• A sentence:

$$x + 3 \le z$$

x, z - variable symbols (primitives in the language)

• An interpretation:

I:
$$x = 5, z = 2$$

Variables mapped to specific real numbers

• Valuation (meaning) function V:

$$V(x+3 \le z, \mathbf{I})$$
 is **False** for I: $x=5, z=2$

is ***True*** for I:
$$x = 5, z = 10$$

CS 1571 Intro to AI

Types of logic

- Different types of logics possible:
 - Propositional logic
 - First-order logic
 - Temporal logic
 - Numerical constraints logic
 - Map-coloring logic

In the following:

- Propositional logic.
 - Formal language for making logical inferences
 - Foundations of **propositional logic**: George Boole (1854)

Propositional logic. Syntax

- Propositional logic P:
 - defines a language for symbolic reasoning

First step: define Syntax+interpretation+semantics of P Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - A set of propositional variables (propositional symbols):

Examples: P, Q, R, \dots or statements like:

Light in the room is on,

It rains outside, etc.

- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 1571 Intro to AI

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$

are sentences

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

In the propositional logic the semantics is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

CS 1571 Intro to AI

Semantic: propositional symbols

A **propositional symbol** (an atomic sentence) can stand for an arbitrary fact (statement) about the world

Examples: "Light in the room is on", "It rains outside", etc.

- An **interpretation** maps symbols to one of the two values: *True (T)*, or *False (F)*, depending on whether the symbol is satisfied in the world
 - I: Light in the room is on -> True, It rains outside -> False
 - I': Light in the room is on -> False, It rains outside -> False
- The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

V(Light in the room is on, I) = TrueV(Light in the room is on, I') = False

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True,False* value

$$V(True, \mathbf{I}) = True$$

$$V(False, \mathbf{I}) = False$$
For any interpretation \mathbf{I}

CS 1571 Intro to AI

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the following rules for combining sentences:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
True True	True False	False False	True False	True True	True False	True False
False	True	True	False	True	True	False
False	False	True	False	False	True	True

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

• Contradiction (always *False*)

$$P \wedge \neg P$$

• Tautology (always True)

$$P \vee \neg P$$

$$\neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$$

$$\neg (P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$$
DeMorgan's Laws

CS 1571 Intro to AI

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is **True** in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

P	Q	$P \vee Q$	$(P \vee Q) \wedge \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True False	True False True False	True	False True False False	True True True True

Model, validity and satisfiability

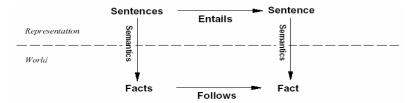
- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	Valid sentence
Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

CS 1571 Intro to AI

Entailment

- The KB agent with reasoning capabilities should be able to generate new sentences (conclusions) that are true given the existing true sentences (stored in its knowledge base)
- **Entailment** reflects the relation of one fact in the world following from the others



- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if
 α is true in all worlds where KB is true

Sound and complete inference.

- Inference is a process by which conclusions are reached
- Assume an inference procedure I $KB \vdash_i \alpha = a$ sentence α can be derived from KB by i
- Soundness: An inference procedure is sound

If
$$KB \vdash_i \alpha$$
 then it is true that $KB \models \alpha$

• Completeness: An inference procedure is complete

If
$$KB = \alpha$$
 then it is true that $KB = \alpha$

CS 1571 Intro to AI

Logical inference

Logical inference problem:

• Given a knowledge base KB (a set of sentences) and a sentence α , does a KB semantically entail α ?

$$KB \mid = \alpha$$
 ?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

- Sentence α is also called a theorem
- Logical inference problem for the propositional logic is decidable.
 - There is a procedure that can answer the logical inference problem in a finite number of steps