
1

CS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 7

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Game search.

CS 1571 Intro to AI

Administration

• PS–2 due today
– Report before the class begins
– Programs through ftp

• PS-3 is out
– on the course web page
– due next week on Tuesday, September 24, 2002

• Report
• Programs

2

CS 1571 Intro to AI

Topics

Search for optimal configurations (cont.)
• Review: Hill climbing, Simulated annealing
• Genetic algorithms
• Configuration search with continuous variables
Games
• Adversarial vs. Cooperative games
• Search tree for adversarial games
• Minimax algorithm
• Speedups:

– Alpha-Beta pruning
– Search tree cutoff with heuristics

CS 1571 Intro to AI

Search for optimal configurations

3

CS 1571 Intro to AI

Search for the optimal configuration

Configuration-search problems:
• Are often enhanced with some quality measure

Quality measure
• reflects our preference towards each configuration (or state)

Goal
• find the configuration with the optimal quality

CS 1571 Intro to AI

Example: Traveling salesman problem

Problem:
• A graph with distances

• Goal: find the shortest tour which visits every city once and
returns to the start
An example of a valid tour:

A

B

C

DE

F

ABCDEF

4

CS 1571 Intro to AI

Iterative improvement algorithms

• Give solutions to the configuration-search with the optimality
measure

Properties of iterative improvement algorithms:
• Search the space of “complete” configurations
• Operators make “local” changes to “complete” configurations
• Keep track of just one state (the current state), not a

memory of past states
– !!! No search tree is necessary !!!

CS 1571 Intro to AI

Example: Traveling salesman problem

“Local” operator for generating the next state:
• divide the existing tour into two parts,
• reconnect the two parts in the opposite order

Part 1

Part 2

A

B

C

DE

F

Example:

ABCD | EF |

ABCDFE

ABCDEF

5

CS 1571 Intro to AI

Searching configuration space

Iterative improvement algorithms
• keep only one configuration (the current configuration) active

Problem:
• How to decide about which operator to apply?

A

B

C

DE

FA

B

C

DE

F

A

B
DE

F

C

?

CS 1571 Intro to AI

Iterative improvement algorithms

Two strategies to choose the configuration (state) to be visited
next:
– Hill climbing
– Simulated annealing

• Later: Extensions to multiple current states:
– Genetic algorithms

• Note: Maximization is inverse of the minimization

[])(max)(min XfXf −⇔

6

CS 1571 Intro to AI

Hill climbing
• Local improvement algorithm
• Look around at states in the local neighborhood and choose the

one with the best value
• Assume: we want to maximize the

value

states

Better

Worse

CS 1571 Intro to AI

Hill climbing

• Hill climbing can get trapped in the local optimum

7

CS 1571 Intro to AI

Hill climbing

• Hill climbing can get clueless on plateaus

value

states

plateau

?

CS 1571 Intro to AI

Simulated annealing

• Permits “bad” moves to states with lower values, thus escape
the local optima

• Gradually decreases the frequency of such moves and their
size (parameter controlling it – temperature)

value

states

Always up

Sometimes
down

8

CS 1571 Intro to AI

Simulated annealing algorithm
• The probability of moving into a state with a higher energy is 1
• The probability of moving into a state with a lower value is

The probability is:
– Proportional to the energy difference
– Modulated through a temperature parameter T:

• for the probability of any move approaches 1
• for the probability that a state with smaller

value is selected goes down and approaches 0
• Cooling schedule:

– Schedule of changes of a parameter T over iteration steps

TEe /∆

0→T

E∆

∞→T

CS 1571 Intro to AI

Simulated annealing algorithm
• Simulated annealing algorithm

– developed originally for modeling physical processes
(Metropolis et al, 53)

• Properties:
– If T is decreased slowly enough the best configuration

(state) is always reached

• Applications:
– VLSI design
– airline scheduling

9

CS 1571 Intro to AI

Simulated evolution and genetic algorithms

• Limitations of simulated annealing:
– Pursues one state configuration;
– Changes to configurations are typically local

Can we do better? May be …
• Assume we have two configurations with good values that are

quite different
• We expect that the combination of the two individual

configurations may lead to a configuration with higher value
(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we modify a
population of configurations

CS 1571 Intro to AI

Genetic algorithms
Algorithm idea:
• Create a population of random configurations
• Create a new population through:

– Biased selection of pairs of configurations from the
previous population

– Crossover (combination) of pairs
– Mutation of resulting individuals

• Evolve the population over multiple generation cycles

• Selection of configurations to be combined:
– Fitness function = value function

measures the quality of an individual (a state) in the
population

10

CS 1571 Intro to AI

Reproduction process in GA

• Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1

CS 1571 Intro to AI

Parametric optimization

• Configuration search:
– Optimizes the measure of the configuration quality
– Additional constraints are possible

• When state space we search is finite, the search problem is
called a combinatorial optimization problem

• When parameters we want to find are real-valued
– parametric optimization problem

Parametric optimization:
• Configurations are described by a vector of free parameters

(variables) w with real-valued values
• Goal: find the set of parameters w that optimize the quality

measure f(w)

11

CS 1571 Intro to AI

Parametric optimization techniques

• Special cases (with efficient solutions):
– Linear programming
– Quadratic programming

• First-order methods:
– Gradient-ascent (descent)
– Conjugate gradient

• Second-order methods:
– Newton-Rhapson methods
– Levenberg-Marquardt

• Constrained optimization:
– Lagrange multipliers

CS 1571 Intro to AI

Gradient ascent method
• Gradient ascent: the same as hill-climbing, but in the

continuous parametric space w

• Change the parameter value of w according to the gradient

w

*|)(wwf
w∂
∂

*w

)(wf

|)(wwf
w

ww
∂
∂+← α

12

CS 1571 Intro to AI

Gradient ascent method

• New value of the parameter

- a learning rate (scales the gradient changes)

|)(wwf
w

ww
∂
∂+← α

0>α

w

*|)(wwf
w∂
∂

*w

)(wf

CS 1571 Intro to AI

Gradient ascent method
• To get to the function minimum repeat (iterate) the gradient

based update few times

• Problems: local optima, saddle points, slow convergence
• More complex optimization techniques use additional

information (e.g. second derivatives)

w)0(w

)(wf

)2(w)1(w)3(w

13

CS 1571 Intro to AI

Game search

CS 1571 Intro to AI

Game search
• Game-playing programs developed by AI researchers since the

beginning of the modern AI era
– Programs playing chess, checkers, etc (1950s)

• Specifics of the game search:
– Sequences of player’s decisions we can control
– Opponent’s decisions (responses) we do not control

• Contingency problem: many possible opponent’s moves
must be “covered” by the solution
Opponent’s behavior introduces an uncertainty in to the game
– We do not know exactly what the response is going to be

• Rational opponent – maximizes it own utility (payoff)
function

14

CS 1571 Intro to AI

Types of game problems

• Types of game problems:
– Adversarial games:

• win of one player is a loss of the other
– Cooperative games:

• players have common interests and utility function
– A spectrum of game problems in between the two:

Here we focus on adversarial games !!

Adversarial games Fully cooperative games

CS 1571 Intro to AI

Example of an adversarial 2 person game:
Tic-tac-toe

• We have the first move (x)

WinLoss Draw

15

CS 1571 Intro to AI

Game search problem

• Game problem formulation:
– Initial state: initial board position + info whose move it is
– Operators: legal moves a player can make
– Goal (terminal test): determines when the game is over
– Utility (payoff) function: measures the outcome of the

game and its desirability

• Search objective:
– find the sequence of player’s decisions (moves)

maximizing its utility (payoff)
– Consider the opponent’s moves and their utility

CS 1571 Intro to AI

Game problem formulation (Tic-tac-toe)

Objectives:
• Player 1:

maximize outcome
• Player 2:

minimize outcome

Utility: 1-1 0

Initial state

Terminal (goal) states

Operators

16

CS 1571 Intro to AI

Minimax algorithm

How to deal with the contingency problem?
• Assuming that the opponent is rational and always optimizes

its behavior (opposite to us) we consider the best opponent’s
response

• Then the minimax algorithm determines the best move

MAX

MIN

3 12 8 2 4 6 14 5 2

3 2 2

3

CS 1571 Intro to AI

Minimax algorithm. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

17

CS 1571 Intro to AI

Minimax algorithm. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

CS 1571 Intro to AI

Minimax algorithm. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4

18

CS 1571 Intro to AI

Minimax algorithm. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4 6

CS 1571 Intro to AI

Minimax algorithm. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4 6

4

2 9 3

2

5

5

5

7

19

CS 1571 Intro to AI

Minimax algorithm

CS 1571 Intro to AI

Complexity of the minimax algorithm

• We need to explore the complete game tree before making the
decision

1-1 0

Complexity:

m

b

?

20

CS 1571 Intro to AI

Complexity of the minimax algorithm

• We need to explore the complete game tree before making the
decision

• Impossible for large games
– Chess: 35 operators, game can have 50 or more moves

1-1 0

Complexity:

)(mbO
m

b

CS 1571 Intro to AI

Solution to the complexity problem

Two solutions:
1. Dynamic pruning of redundant branches of the search tree

– identify provably suboptimal branch of the search tree
even before it is fully explored

– Cutoff the suboptimal branch
Procedure: Alpha-Beta pruning

2. Early cutoff of the search tree
– uses imperfect minimax value estimate of non-terminal

states.

21

CS 1571 Intro to AI

Alpha beta pruning

• Some branches will never be played by rational players since
they include sub-optimal decisions (for either player)

2≤3

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

22

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4≥

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

4≤

23

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4≤

6≥4=
!!

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

24

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

2≥

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

2=

2≤

25

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

2=

2≤

!!

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

2=

2≤

5≥

26

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

2=

2≤

5=

5≤

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

4≥

2=

2≤

5=

5≤

7≥

!!

27

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

5≥

2=

2≤

5=

5=

7≥

CS 1571 Intro to AI

Alpha beta pruning. Example

MAX

MAX

MIN

4 3 6 2 2 1 9 35 1 5 4 7 5

4=

6≥4=

5=

2=

2≤

5=

5=

7≥

nodes that were never explored !!!

28

CS 1571 Intro to AI

Alpha-Beta pruning

GOAL

GOAL

CS 1571 Intro to AI

Using minimax value estimates

• Idea:
– Cutoff the search tree before the terminal state is reached
– Use imperfect estimate of the minimax value at the leaves

• Evaluation function

Heuristic
evaluation
function

MAX

MIN

Cutoff level

4 6

4

2 9 3

2

5

5

5

7

4 3

29

CS 1571 Intro to AI

Design of evaluation functions

• Heuristic estimate of the value for a sub-tree
• Example of a heuristic functions:

– Material advantage in chess, checkers
• Gives a value to every piece on the board, its position

and combines them
– More general feature-based evaluation function

• Typically a linear evaluation function:

kk wsfwsfwsfsf)()()()(2211 K++=

)(sf i - a feature of a state s

iw - feature weight

CS 1571 Intro to AI

Further extensions to real games

• Restricted set of moves to be considered under the cutoff level
to reduce branching and improve the evaluation function
– E.g., consider only the capture moves in chess

…

Heuristic estimates

