CS 1571 Introduction to Al
Lecture 7

Game search.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al

Administration

* PS-2 due today
— Report before the class begins
— Programs through ftp

* PS-3is out
— on the course web page
— due next week on Tuesday, September 24, 2002
* Report
* Programs

CS 1571 Intro to Al

Topics

Search for optimal configurations (cont.)
* Review: Hill climbing, Simulated annealing
* Genetic algorithms
» Configuration search with continuous variables
Games
» Adversarial vs. Cooperative games
+ Search tree for adversarial games
* Minimax algorithm
* Speedups:
— Alpha-Beta pruning
— Search tree cutoff with heuristics

CS 1571 Intro to Al

Search for optimal configurations

CS 1571 Intro to Al

Search for the optimal configuration

Configuration-search problems:
* Are often enhanced with some quality measure

Quality measure

» reflects our preference towards each configuration (or state)

Goal
+ find the configuration with the optimal quality

CS 1571 Intro to Al

Example: Traveling salesman problem

Problem:
* A graph with distances
A

F WAQ B

EC

* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF

CS 1571 Intro to Al

Iterative improvement algorithms

* Give solutions to the configuration-search with the optimality
measure

Properties of iterative improvement algorithms:
» Search the space of “complete” configurations
» Operators make “local” changes to “complete” configurations

» Keep track of just one state (the current state), not a
memory of past states

— !!! No search tree is necessary !!!

CS 1571 Intro to Al

Example: Traveling salesman problem

“Local” operator for generating the next state:
+ divide the existing tour into two parts,
* reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD | EF |

!

ABCDFE

CS 1571 Intro to Al

Searching configuration space

Iterative improvement algorithms
* keep only one configuration (the current configuration) active

Problem:
» How to decide about which operator to apply?

CS 1571 Intro to Al

Iterative improvement algorithms

Two strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

» Later: Extensions to multiple current states:
— Genetic algorithms

* Note: Maximization is inverse of the minimization

min f(X) < max[—f(X)]

CS 1571 Intro to Al

Hill climbing

* Local improvement algorithm

» Look around at states in the local neighborhood and choose the
one with the best value

* Assume: we want to maximize the

value

Better

Worse

states

CS 1571 Intro to Al

Hill climbing

+ Hill climbing can get trapped in the local optimum

global maximum

value

local maximum

states

CS 1571 Intro to Al

Hill climbing

 Hill climbing can get clueless on plateaus

value

plateau

states

CS 1571 Intro to Al

Simulated annealing

* Permits “bad” moves to states with lower values, thus escape
the local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

value

Always up

Sometimes
down

states

CS 1571 Intro to Al

Simulated annealing algorithm

The probability of moving into a state with a higher energy is 1
The probability of moving into a state with a lower value is

AE/T
e

The probability is:
— Proportional to the energy difference AFE
— Modulated through a temperature parameter T:
* for 7 - o the probability of any move approaches 1

« for 7 -, (0 the probability that a state with smaller
value is selected goes down and approaches 0

Cooling schedule:
— Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

Simulated annealing algorithm

Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

Applications:
— VLSI design
— airline scheduling

CS 1571 Intro to Al

Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration;
— Changes to configurations are typically local

Can we do better? May be ...

» Assume we have two configurations with good values that are
quite different

* We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we modify a
population of configurations

CS 1571 Intro to Al

Genetic algorithms

Algorithm idea:
* Create a population of random configurations
* Create a new population through:

— Biased selection of pairs of configurations from the
previous population

— Crossover (combination) of pairs
— Mutation of resulting individuals
* Evolve the population over multiple generation cycles

* Selection of configurations to be combined:
— Fitness function = value function

measures the quality of an individual (a state) in the
population

CS 1571 Intro to Al

Reproduction process in GA

» Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1

000110010111

111010101100

001110101001 | 6 24% “['| 111010101100 }~>_<‘ 111010101001 }—>{ 111fH 0101001 ‘

111011011100 | 5 20% “T[001110101001 | | 001110101100 |—»{ 00111010110f] |

(a) (b) (c) (d) (e)
Initial Population Fitness Function Sclection Cross—Over Mutation

[111010101100 }>_<‘ 111010010111 }——{ 111010010111 ‘

“ 000110010111 }/ | 000110101100 | =| 000110101100 |

CS 1571 Intro to Al

Parametric optimization

* Configuration search:
— Optimizes the measure of the configuration quality
— Additional constraints are possible

» When state space we search is finite, the search problem is
called a combinatorial optimization problem

* When parameters we want to find are real-valued
— parametric optimization problem

Parametric optimization:

» Configurations are described by a vector of free parameters
(variables) w with real-valued values

* Goal: find the set of parameters w that optimize the quality
measure f{w)

CS 1571 Intro to Al

Parametric optimization techniques

» Special cases (with efficient solutions):
— Linear programming
— Quadratic programming
* First-order methods:
— Gradient-ascent (descent)
— Conjugate gradient
* Second-order methods:
— Newton-Rhapson methods
— Levenberg-Marquardt

* Constrained optimization:
— Lagrange multipliers

CS 1571 Intro to Al

Gradient ascent method

* Gradient ascent: the same as hill-climbing, but in the
continuous parametric space w

f(w)

w* W

» Change the parameter value of w according to the gradient

woe wrra 2 row)..
ow

CS 1571 Intro to Al

Gradient ascent method

S (w)

* New value of the parameter

we wira 2 rw)..
ow

a >0 - alearning rate (scales the gradient changes)

CS 1571 Intro to Al

Gradient ascent method

* To get to the function minimum repeat (iterate) the gradient
based update few times

fw)

w0y My, (24, 3) W

* Problems: local optima, saddle points, slow convergence

* More complex optimization techniques use additional
information (e.g. second derivatives)

CS 1571 Intro to Al

Game search

CS 1571 Intro to Al

Game search

Game-playing programs developed by Al researchers since the
beginning of the modern Al era

— Programs playing chess, checkers, etc (1950s)

Specifics of the game search:
— Sequences of player’s decisions we can control
— Opponent’s decisions (responses) we do not control

Contingency problem: many possible opponent’s moves
must be “covered” by the solution

Opponent’s behavior introduces an uncertainty in to the game
— We do not know exactly what the response is going to be

Rational opponent — maximizes it own utility (payoff)
function

CS 1571 Intro to Al

Types of game problems

* Types of game problems:
— Adversarial games:
» win of one player is a loss of the other
— Cooperative games:
* players have common interests and utility function
— A spectrum of game problems in between the two:

Adversarial games Fully cooperative games

Here we focus on adversarial games !!

CS 1571 Intro to Al

Example of an adversarial 2 person game:
Tic-tac-toe

» We have the first move (x)

X X X
X X X
X X
X0 X |o] |X
o
X|O|X| |X[O X|0
X X

X|0|X

| |
1 1
o] o]
5] X
X o]

Qoo —
|

x|0|x

O x|x

X|ojo

Loss Draw Win

CS 1571 Intro to Al

Game search problem

* Game problem formulation:
— Initial state: initial board position + info whose move it is
— Operators: legal moves a player can make
— Goal (terminal test): determines when the game is over

— Utility (payoff) function: measures the outcome of the
game and its desirability

* Search objective:

— find the sequence of player’s decisions (moves)
maximizing its utility (payoff)
— Consider the opponent’s moves and their utility

CS 1571 Intro to Al

Game problem formulation (Tic-tac-toe)

Objectives: Operators Initial state

* Player 1: / “\
maximize outcome

X X X

. X X X
. Pl.ayelj 2: - -
minimize outcome
X0 X o] X
o
X|0|X X0 X|0
X X
|
. X0 X X[0] X X[0|X
Terminal (goal) states . | [o7x|f [o[o[x| I Tx
Q X[X|O| gX[0|O

Utility: -1 0 1

CS 1571 Intro to Al

Minimax algorithm

How to deal with the contingency problem?

+ Assuming that the opponent is rational and always optimizes
its behavior (opposite to us) we consider the best opponent’s
response

* Then the minimax algorithm determines the best move

.
EE
an g VRN

2 4 6 14 5 2

CS 1571 Intro to Al

Minimax algorithm. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Minimax algorithm. Example

MAX

MIN

MAX <::

CS 1571 Intro to Al

Minimax algorithm. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Minimax algorithm. Example

MAX

MIN
C:

AN

CS 1571 Intro to Al

Minimax algorithm. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Minimax algorithm

function MNIMAX-DECISION{game) returns an operator

for each ap in OPERATORS[game] do

VALUE[ap] é= MINIMAX-VALUR APPLY (0p, game), game)
end
return the ap with the highest VALUE[ap]

function MINIMAX-VALUE(sfale, game) returns a wtifity value

if TERMINAL-TEST[game)i state) then

return UTILITY [game | stade)
else if MAX is to move in stafe then

return the highest MINIMAX-VALUE of SUCCESSORS(sfate)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(sfafe)

CS 1571 Intro to Al

Complexity of the minimax algorithm

* We need to explore the complete game tree before making the
decision

Hﬂ@ﬁgﬂﬂ _ g:H EQ:/;EH%EEEI Complexity:

|>¢ | - -

TJ—‘xog:| . 9

R
-1 0

CS 1571 Intro to Al

Complexity of the minimax algorithm

* We need to explore the complete game tree before making the
decision

S

EH:/ Tjg:f% Complexity:
TL-‘ * ol | " 0 (b m)

L T

X (-]

-=-__ "

I

-10 1

» Impossible for large games
— Chess: 35 operators, game can have 50 or more moves

CS 1571 Intro to Al

Solution to the complexity problem

Two solutions:
1. Dynamic pruning of redundant branches of the search tree

— identify provably suboptimal branch of the search tree
even before it is fully explored

— Cutoff the suboptimal branch
Procedure: Alpha-Beta pruning

2. Early cutoff of the search tree

— uses imperfect minimax value estimate of non-terminal
states.

CS 1571 Intro to Al

Alpha beta pruning

» Some branches will never be played by rational players since
they include sub-optimal decisions (for either player)

MAX

MIN

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN

MAX

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX 24
MIN o -4
MAX ¢ _4 > 6 > 2

e o o

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX 24

MIN

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX 24

MIN

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX 2 -

MIN =i <2

MAX ¢ _, 56 & =2 > 5
é °

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN i

MAX ¢ _4 >6 @ =
° °

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX

MIN i

MAX ¢ _4 >6 @ =
o 3

CS 1571 Intro to Al

Alpha beta pruning. Example

MAX e =5
MIN o -4 <2 =
MAX ® -4 > 6 o =2 ® =5 > 7
° e o e o
4 3 6 2 2 19 5 3 15 4 17 5
CS 1571 Intro to Al
Alpha beta pruning. Example
MAX e =5
MIN o -4 <2 o -
MAX 4 =i >6 @ =2 ®=5 > 7
° ° °
4 3 6 2 2 19 5 3 15 4 17 5

@ += nodes that were never explored !!!

CS 1571 Intro to Al

Alpha-Beta pruning

function MAX-VALUE(sfate, game, ey,) returns the minimax value of stafe
inputs: stafe, current state in game
game, game description
x, the best score for MAX along the path to sfafe
43, the best score for MIN along the path to stafe

il GOAL-TEsT(state) then return Eval(srase)
for each s in SUCCESSORS(stafe) do
ey 4= Max(er, MIN-VALUE(s, game, a, 3))
if v > & then return 3
end
refurn sy

function MIN-VALUE(sfate, game, or, 3) returns the minimax value of state

if GOAL-TEsT(state) then return Eval(srae)
for each s in SUCCESSORS(stafe) do
= VNG 3, MAX-YALUE(S, game, o, 3))
if 7 < ¢ then return o
end
return 3

CS 1571 Intro to Al

MAX

MIN

Heuristic
evaluation =
function

Using minimax value estimates

Idea:

— Cutoff the search tree before the terminal state is reached

— Use imperfect estimate of the minimax value at the leaves

» Evaluation function

Cutoff level

CS 1571 Intro to Al

Design of evaluation functions

* Heuristic estimate of the value for a sub-tree
* Example of a heuristic functions:
— Material advantage in chess, checkers

* Gives a value to every piece on the board, its position
and combines them

— More general feature-based evaluation function
* Typically a linear evaluation function:

S) = fils)w + fL(s)w, +... [(s)w,

f.(s) - afeature of a state s

w; - feature weight

CS 1571 Intro to Al

Further extensions to real games

» Restricted set of moves to be considered under the cutoff level
to reduce branching and improve the evaluation function

— E.g., consider only the capture moves in chess

N\
\

N

X

Heuristic estimates 7

CS 1571 Intro to Al

