CS 1571 Introduction to AI Lecture 6

Search for optimal configurations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Topics

- Review of a CSP problem:
 - Formulation
 - Search
 - Constraint propagation
- Heuristics for CSP problems
- Search for optimal configurations:
 - Examples
 - Hill climbing
 - Simulated annealing
 - Genetic algorithms
- Search for optimal configurations with continuous variables

Search problem

A search problem:

- Search space (or state space): a set of objects among which we conduct the search:
- **Initial state:** an object we start to search from;
- **Operators (actions):** transform one state in the search space to the other;
- Goal condition: describes the object we search for
- Possible metric on a search space:
 - measures the quality of the object with regard to the goal

Search problems occur in planning, optimizations, learning

CS 1571 Intro to AI

Constraint satisfaction problem (CSP)

Two types of search:

- **path search** (a path from the initial state to a state satisfying the goal condition)
- **configuration search** (a configuration satisfying goal conditions)

Constraint satisfaction problem (CSP) is a configuration search problem where:

- A state is defined by a set of variables
- Goal condition is represented by a set constraints on possible variable values

Special properties of the CSP allow more specific procedures to be designed and applied for solving them

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:

• Represent queens, one for each column:

$$-Q_1,Q_2,Q_3,Q_4$$

- Values:
 - Row placement of each queen on the board {1, 2, 3, 4}

$$Q_1 = 2, Q_2 = 4$$

Constraints: $Q_i \neq Q_j$ Two queens not in the same row $|Q_i - Q_j| \neq |i - j|$ Two queens not on the same diagonal

CS 1571 Intro to AI

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (can evaluate to true)

- Used in the propositional logic (covered later)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

Variables:

- Propositional symbols (P, R, T, S)
- Values: True, False

Constraints:

• Every conjunct must evaluate to true, at least one of the literals must evaluate to true

$$(P \lor Q \lor \neg R) \equiv True, (\neg P \lor \neg R \lor S) \equiv True, \dots$$

Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:

- Represent countries
 - -A,B,C,D,E
- Values:
 - K -different colors{Red, Blue, Green,...}

Constraints: $A \neq B, A \neq C, C \neq E$, etc

CS 1571 Intro to AI

Other real world CSP problems

Scheduling problems:

- E.g. telescope scheduling
- High-school class schedule

Design problems:

- Hardware configurations
- VLSI design

More complex problems may involve:

- real-valued variables
- additional preferences on variable assignments the optimal configuration is sought

Constraint satisfaction as a search problem

Formulation of a CSP as a search problem:

- States. Assignment (partial, complete) of values to variables.
- **Initial state.** No variable is assigned a value.
- **Operators.** Assign a value to one of the unassigned variables.
- Goal condition. All variables are assigned, no constraints are violated.
- Constraints can be represented:
 - **Explicitly** by a set of allowable values
 - Implicitly by a function that tests for the satisfaction of constraints

CS 1571 Intro to AI

Solving a CSP through standard search

- Maximum depth of the tree: Number of variables of the CSP
- **Depth of the solution:** Number of variables of the CSP
- **Branching factor:** if we fix the order of variable assignments the branch factor depends on the number of their values

Solving a CSP through standard search

- What search algorithm to use: Depth first search !!!
 - Since we know the depth of the solution
 - We do not have to keep large number of nodes in queues

Solving a CSP through standard search

- When to stop the expansion of the node?
 - No valid assignment of values to variables exists for the branch of the tree rooted at that node
 - Constraint propagation: a technique to check the violations

A state (more broadly) is defined by a set variables and their legal and illegal assignments

Legal and illegal assignments can be represented through variable equations and variable disequations

Example: map coloring

Equation A = Red

Disequation $C \neq \text{Red}$

Constraints + assignments can entail new equations and disequations

$$A = \text{Red} \rightarrow B \neq \text{Red}$$

CS 1571 Intro to AI

Constraint propagation

Assign A=Red

	Red	Blue	Green
A	\		
В	X		
С	X		
D			
Е	X		
F			

- equations \mathbf{X} - disequations

• Assign E=Blue

	Red	Blue	Green
A	>	×	
В	X	×	
C	X	X	
D			
Е	X	V	
F		×	

CS 1571 Intro to AI

Constraint propagation

• Assign F=Green

	Red	Blue	Green
A	/	×	
В	X	×	X
С	X	×	X
D			X
Е	X	V	X
F		X	V

• Assign F=Green

	Red	Blue	Green
Α	/	X	
В	X	×	X
С	X	X	X
D			×
Е	X	V	X
F		X	V

Conflict !!! No legal assignments available for B and C

CS 1571 Intro to AI

Constraint propagation

• We can derive remaining legal values through propagation

	Red	Blue	Green
A	/	×	
В	X	×	/
С	X	×	/
D			
Е	X	/	
F		X	

B=Green

C=Green

• We can derive remaining legal values through propagation

	Red	Blue	Green
A	>	×	X
В	X	×	/
С	X	×	/
D	X		
Е	X	V	X
F	V	X	X

B=Green C=Green

F=Red

CS 1571 Intro to AI

Constraint propagation

Three known techniques for propagating the effects of past assignments and constraints:

- Value propagation
- Arc consistency
- Forward checking
- Difference:
 - Completeness of inferences
 - Time complexity of inferences.

- 1. Value propagation. Infers:
 - equations from the set of equations defining the partial assignment, and constraints
- 2. Arc consistency. Infers:
 - disequations from the set of equations and disequations defining the partial assignment, and constraints
 - equations through the exhaustion of alternatives
- 3. Forward checking. Infers:
 - disequations from a set of equations defining the partial assignment, and constraints
 - Equations through the exhaustion of alternatives
 Restricted forward checking:
 - uses only active constraints (active constraint only one variable unassigned in the constraint)

CS 1571 Intro to AI

Heuristics for CSP

Backtracking searches the space in the depth-first manner.

But we can choose:

- Which variable to assign next?
- Which value to choose first?

Heuristics

- Most constrained variable
 - Which variable is likely to become a bottleneck?
- Least constraining value
 - Which value gives us more flexibility later?

Heuristics for CSP

Examples: map coloring

Heuristics

- Most constrained variable
 - Country E is the most constrained one (cannot use Red, Green)
- Least constraining value
 - Assume we have chosen variable C
 - Red is the least constraining valid color for the future

CS 1571 Intro to AI

Configuration search for optimal solutions

Search for the optimal configuration

Configuration-search problems:

• Are often enhanced with some quality measure

Quality measure

• reflects our preference towards each configuration (or state)

Goal

• find the configuration with the optimal quality

CS 1571 Intro to AI

Example: Traveling salesman problem

Problem:

• A graph with distances

• Goal: find the shortest tour which visits every city once and returns to the start

An example of a valid tour: ABCDEF

Example: N queens

- Some CSP problems do not have a quality measure
- The quality of a configuration in a CSP can be measured by the number of constraints violated
- Solving corresponds to the minimization of the number of constraint violations

of violations =3

of violations =1

of violations =0

CS 1571 Intro to AI

Iterative improvement algorithms

• Give solutions to the configuration-search with the optimality measure

Properties of iterative improvement algorithms:

- Search the space of "complete" configurations
- Operators make "local" changes to "complete" configurations
- Keep track of just one state (the current state), not a memory of past states
 - !!! No search tree is necessary !!!

Example: Traveling salesman problem

Problem:

• A graph with distances

• Goal: find the shortest tour which visits every city once and returns to the start

An example of a valid tour: ABCDEF

CS 1571 Intro to AI

Example: Traveling salesman problem

"Local" operator for generating the next state:

- divide the existing tour into two parts,
- reconnect the two parts in the opposite order

Example: Traveling salesman problem

"Local" operator:

generates the next configuration (state)

CS 1571 Intro to AIC

Example: N-queens

- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

Searching configuration space

Iterative improvement algorithms

• keep only one configuration (the current configuration) active

• How to decide about which operator to apply?

CS 1571 Intro to AI

Iterative improvement algorithms

Two strategies to choose the configuration (state) to be visited next:

- Hill climbing
- Simulated annealing
- Later: Extensions to multiple current states:
 - Genetic algorithms
- Note: Maximization is inverse of the minimization $\min \ f(X) \Longleftrightarrow \max \left[-f(X) \right]$

Hill climbing

- Local improvement algorithm
- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the

CS 1571 Intro to AI

Hill climbing

- Always choose the next best successor state
- Stop when no improvement possible

```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current← MAKE-NODE(INITIAL-STATE[problem])
loop do
next← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current← next
end
```

Hill climbing

- Local improvement algorithm
- Look around at states in the local neighborhood and choose the one with the best value

• What can go wrong?

CS 1571 Intro to AI

• Hill climbing can get trapped in the local optimum

Hill climbing

• Hill climbing can get clueless on plateaus

CS 1571 Intro to AI

Hill climbing and n-queens

- The quality of a configuration given by the number of constraints violated
- Then: Hill climbing reduces the number of violated constraints
- Min-conflict strategy (heuristic):
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints

Success !! But not always!!! The local optima problem!!!

Simulated annealing

- Permits "bad" moves to states with lower values, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)

CS 1571 Intro to AI

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

static: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

 $current \leftarrow Make-Node(Initial-State[problem])$

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T=0 then return current

 $next \leftarrow$ a randomly selected successor of current

 $\Delta E \leftarrow Value[next] - Value[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Simulated annealing algorithm

- The probability of moving into a state with lower value $e^{\Delta E/T}$
- T is a temperature parameter:

for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0

- Algorithm was originally developed for modeling physical processes (Metropolis et al, 53)
- If T is decreased slowly enough the best state is always reached
- **Applications:** VLSI design, airline scheduling