
1

CS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 4

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Uninformed search methods (cont.)
Informed search methods

CS 1571 Intro to AI

Topics

Uninformed search methods
• Review of uninformed search methods
• Checking state repeats
• Uniform cost search
Informed search methods
• Incorporating additional information to guide the search
• Best first search

– Greedy methods
– A* search
– IDA*

• Heuristics

2

CS 1571 Intro to AI

Uninformed methods

• Uninformed search methods use only information available in
the problem definition

– Breadth-first search (BFS)

– Depth-first search (DFS)

– Iterative deepening (IDA)

– Bi-directional search

• For the minimum cost path problem:

– Uniform cost search

CS 1571 Intro to AI

Breadth first search (BFS)

• The shallowest node is expanded first

3

CS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity:

same as time - every node is kept in the memory

)(1 2 dd bObbb =++++ K

)(dbO

CS 1571 Intro to AI

Depth-first search (DFS)

• The deepest node is expanded first
• Backtrack when the path cannot be further expanded

4

CS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. Infinite loops can occur.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity:

linear in the maximum depth of the search tree m

)(mbO

)(bmO

CS 1571 Intro to AI

Limited-depth depth first search

• The limit (l) on the depth of the depth-first exploration

)(lbO

)(blO
l - is the given limit

• Time complexity:

• Memory complexity:

Limit l=2

Not explored

l

5

CS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Progressively increases the limit of the limited-depth depth-
first search

Limit 0

Limit 1

Limit 2

CS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.
(the same as BFS)

• Optimality: Yes, for the shortest path.
(the same as BFS)

• Time complexity:

exponential in the depth of the solution d
worse than BFS, but asymptotically the same

• Memory (space) complexity:

linear in the depth of the solution - much better than BFS

)()()()()1(21 dd bObObObOO =++++ K

)(dbO

6

CS 1571 Intro to AI

Elimination of state repeats

While searching the state space for the solution we can encounter
the same state many times.

Question: Is it necessary to keep and expand all copies of states
in the search tree?

Two possible cases:
(A) Cyclic state repeats
(B) Non-cyclic state repeats A

A

B

B

Search tree

CS 1571 Intro to AI

Elimination of cycles

Case A: Corresponds to the path with a cycle
Can the branch (path) in which the same state is visited twice ever

be a part of the optimal (shortest) path between the initial state
and the goal? No !!

Branches representing cycles cannot be the part of the shortest
solution and can be eliminated.

A

A

7

CS 1571 Intro to AI

Elimination of cycles

How to check for cyclic state repeats:
Check ancestors in the tree structure.
Do not expand the node with the state that is the same as the state

in one of its ancestors.

A

A

CS 1571 Intro to AI

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from
the initial state

Is one of the nodes nodeB-1, nodeB-2 better or preferable?
Yes. nodeB-1 represents the shorter path between the initial
state and B

B

B

Root of the search tree

nodeB-1

nodeB-2

8

CS 1571 Intro to AI

Elimination of non-cyclic state repeats

Since we are happy with the optimal solution nodeB-2 can be
eliminated. It does not affect the optimality of the solution.

Problem: Nodes can be encountered in different order during
different search strategies.

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 1571 Intro to AI

Elimination of non-cyclic state repeats with
BFS

Breadth FS is well behaved with regard to non-cyclic state
repeats: nodeB-1 is always expanded before nodeB-2

• Order of expansion determines the correct elimination strategy
• we can safely eliminate the node that is associated with the state

that has been expanded before

B

B

Root of the search tree

nodeB-1

nodeB-2

9

CS 1571 Intro to AI

Elimination of state repeats for the BFS

For the breadth-first search (BFS)
• we can safely eliminate all second, third, fourth, etc.

occurrences of the same state
• this rule covers both the cyclic and non-cyclic repeats !!!

Implementation of all state repeat elimination through marking :
• All expanded states are marked
• All marked states are stored in a special data structure

(a hash table)
• Checking if the node has ever been expanded corresponds to

the mark structure lookup

CS 1571 Intro to AI

Elimination of non-cyclic state repeats with
DFS

Depth FS: nodeB-2 is expanded before nodeB-1
• The order of node expansion does not work imply correct

elimination strategy
• we need to remember the length of the path between nodes to

safely eliminate them

B

B

Root of the search tree

nodeB-1

nodeB-2

10

CS 1571 Intro to AI

Elimination of all state redundancies

• General strategy: A node is redundant if there is another
node with exactly the same state and a shorter path from the
initial state
– Works for any search method
– Uses additional path length information

Implementation: marking with the minimum path value :
• The new node is redundant and can be eliminated if

– it is in the hash table (it is marked), and
– its path is longer or equal to the value stored.

• Otherwise the new node cannot be eliminated and it is entered
together with its value into the hash table. (if the state was in
the hash table the new path value is better and needs to be
overwritten.)

CS 1571 Intro to AI

Bi-directional search

• In some search problems we want to find the path from the
initial state to the unique goal state (e.g. traveler problem)

• Bi-directional search:

– Search both from the initial state and the goal state;
– Use inverse operators for the goal-directed search.

Initial state Goal state

11

CS 1571 Intro to AI

Bi-directional search

When does it help?
• It cuts the size of the search tree by half.
What is necessary?
• Merge the solutions.

Initial state Goal state

Equal ?

CS 1571 Intro to AI

Minimum cost path search

Traveler example with distances [km]

Optimal path: the shortest distance path from Arad to Bucharest

12

CS 1571 Intro to AI

Searching for the minimum cost path

• General minimum cost path-search problem:
– adds weights or costs to operators (links)

• “intelligent” expansion of the search tree should be driven by the
cost of the current (partially) built path

• Expand the leaf node with the minimum first.
– This is what the breadth first search does when operator costs

are all equal to 1.
• The basic algorithm for finding the minimum cost path:

– Dijkstra’s shortest path
• In AI, the strategy goes under the name

– Uniform cost search

)(ngPath cost function ; path cost from the initial state to n

)(ng

CS 1571 Intro to AI

Uniform cost search

• Expand the node with the minimum path cost first
• Implementation: priority queue

Arad 0
Arad 0queue

g(n)

13

CS 1571 Intro to AI

Uniform cost search

Arad

Zerind Sibiu Timisoara

0
75

140
118

75 140 118

Zerind 75
Timisoara 118
Sibiu 140

queue

g(n)

CS 1571 Intro to AI

Uniform cost search

Arad

Zerind

OradeaArad

Sibiu Timisoara

0
75

140
118

75 140 118
75

71

150 146

Timisoara 118
Sibiu 140
Oradea 146
Arad 150

queue

g(n)

14

CS 1571 Intro to AI

Uniform cost search

Arad

Zerind Sibiu Timisoara

OradeaArad Arad Lugoj

0
75

140
118

75
140

118
75

71

150 146

118
111

229236

Sibiu 140
Oradea 146
Arad 150
Lugoj 129
Arad 236

queue

g(n)

CS 1571 Intro to AI

Properties of the uniform cost search

• Completeness: Yes, assuming that operator costs are non-
negative (the cost of path never decreases)

• Optimality: Yes. Returns the least-cost path.

• Time complexity:
number of nodes with the cost g(n) smaller than the optimal
cost

• Memory (space) complexity:
number of nodes with the cost g(n) smaller than the optimal
cost

))((successor)(ngng ≤

15

CS 1571 Intro to AI

Elimination of redundant tree nodes

• The path-cost method for the safe elimination of all
redundant state repeats works also for the uniform cost
search:
– A node is redundant if there is another node with exactly

the same state and a shorter path from the initial state

Implementation: marking with the minimum path value :
• The new node is redundant and can be eliminated if

– it is in the hash table (it is marked), and
– its path is longer or equal to the value stored.

• Otherwise the new node cannot be eliminated and it is entered
together with its value into the hash table. (if the state was in
the hash table the new path value is better and needs to be
overwritten.

CS 1571 Intro to AI

Informed search method

16

CS 1571 Intro to AI

Additional information to guide the search

• Uninformed search methods
– use only the information from the problem definition; and
– past explorations, e.g. cost of the path generated so far.

• Informed search methods
– incorporate additional measure of a potential of a specific

state to reach the goal
– a potential of a state (node) to reach a goal is measured

through a heuristic function

• Heuristic function is denoted)(nh

CS 1571 Intro to AI

Search with a node evaluation function

• A search strategy can be defined in terms of a node
evaluation function

• Evaluation function
– Denoted
– measures the desirability of a node to be expanded next

• Search: expand the node (state) with the best evaluation
function value

• Implementation: successors of the expanded node are
inserted into the priority queue in the decreasing order of
their evaluation function value

• Uniform cost search:
– A special case of the search with an evaluation function

)()(ngnf =

)(nf

17

CS 1571 Intro to AI

Best-first search

Best-first search
• Also relies on the evaluation function to guide the

growth of the search tree and nodes expansions
• incorporates a heuristic function into the evaluation function.

Special cases (differ in the design of evaluation function):
– Greedy search

– A* algorithm

+ iterative deepening version of A* : IDA*

)(nf

)()(nhnf =

)()()(nhngnf +=

CS 1571 Intro to AI

Example: traveler problem with straight-line
distance information

• Straight-line distances give an estimate of the cost of the path
from that city to Bucharest (a good heuristic)

18

CS 1571 Intro to AI

Greedy search method

• Evaluation function is equal to the heuristic function

• Idea: the node that seems to be the closest to the goal is
expanded first

)()(nhnf =

CS 1571 Intro to AI

Greedy search

Arad 366

f(n)=h(n)

queue Arad 366

19

CS 1571 Intro to AI

Greedy search

Arad

Zerind Sibiu Timisoara

366

75
140

118

374 253 329

queue Sibiu 253
Timisoara 329
Zerind 374

f(n)=h(n)

CS 1571 Intro to AI

Greedy search

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

Fagaras 178
Rimniciu V. 193
Timisoara 329
Arad 366
Zerind 374
Oradea 380

queue

f(n)=h(n)

20

CS 1571 Intro to AI

Greedy search

Arad

BucharestSibiu

Sibiu Timisoara

75
140

118

21199

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

253 0

Bucharest 0
Rimniciu V. 193
Sibiu 253
Timisoara 329
Arad 366
Zerind 374
Oradea 380

queue

f(n)=h(n)

CS 1571 Intro to AI

Properties of greedy search

• Completeness: No.
We can loop forever. Nodes that seem to be the best choices
can lead to cycles. Elimination of state repeats can solve the
problem.

• Optimality: No.
Even if we reach the goal, we may be biased by a bad
heuristic estimate. Evaluation function disregards the cost of
the path built so far.

• Time complexity:

• Memory (space) complexity:

)(mbO

)(mbO

Worst case !!! But often better!

Often better!

