CS 1571 Introduction to AI Lecture 27

Appied AI topics

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Topics in AI

Five main areas:

- Problem solving and search
- Logic and knowledge representations
- Planning
- Uncertainty
- Learning

Many other topics:

- AI programming languages
- Speech recognition
- Natural language processing
- Image understanding
- Robotics,

Next

• Objective: take acoustic signal and convert it to text

Speech recognition

 We want to determine the sequence of words that is most probable given the input signal

$$P(wordseq = \mathbf{w} \mid signal = \mathbf{s})$$

• It is easier to define an **acoustic model** that relates:

$$P(signal = \mathbf{s} \mid wordseq = \mathbf{w})$$

• This is like a diagnosis problem, we can use the Bayes rule:

$$P(wordseq=\mathbf{w} \mid signal=\mathbf{s}) = \frac{P(signal=\mathbf{s} \mid wordseq=\mathbf{w})P(wordseq=\mathbf{w})}{P(signal=\mathbf{s})}$$

• Assume we have multiple possible word sequences:

$$\mathbf{w}^1, \mathbf{w}^2, \dots \mathbf{w}^k$$

• The best word sequence:

$$\underset{i}{\operatorname{arg\,max}} P(signal = \mathbf{s} \mid wordseq = \mathbf{w}^{i}) P(wordseq = \mathbf{w}^{i})$$

• We need to define:

 $P(signal = \mathbf{s} \mid wordseq = \mathbf{w})$ and $P(wordseq = \mathbf{w})$

for all possible word and signal sequences

• **Defining the probability:** $P(wordseq = \mathbf{w})$ $\mathbf{w} = \mathbf{w}_1 w_2 \dots w_n$

 $P(wordseq = w_1w_2...w_n) = P(w_1)P(w_2 \mid w_1)...P(w_n \mid w_1w_2...,w_{n-1})$

- By the chain rule
- Simplifications:
 - Unigram model: a probability of each word is independent of the previous word

 $P(wordseq = w_1 w_2 ... w_n) = P(w_1)P(w_2)P(w_3)...P(w_n)$

- **Bigram model:** only the previous word matters

 $P(wordseq = w_1 w_2 ... w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2)...P(w_n \mid w_{n-1})$

CS 1571 Intro to AI

Speech recognition

• **Defining the probability:** $P(signal = \mathbf{s} \mid wordseq = \mathbf{w})$

$$\mathbf{s} = s_1 s_2 s_3 \dots s_m \qquad \qquad \mathbf{w} = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_n$$

- Two simplifications:
 - 1. Define signal signatures for individual words

$$P(\mathbf{s} = s_1 s_2 \dots s_j \mid word = w_i)$$

2. Divide the acoustic word models into a sequence of phones and define signal signature models for phones

$$P(\mathbf{p} = p_1 p_2 \dots p_u \mid word = w_i)$$

$$P(\mathbf{s} = s_1 s_2 \dots s_r \mid phone = p_a)$$

Conditional probabilities of sequences modeled most often as:

Hidden Markov Models (HMMs)

HMM models of words $P(\mathbf{p} = p_1 p_2 ... p_u \mid word = w_i)$

• Example: word: tomato

Word model with dialect variation:

2 phones sequences

Word model with coarticulation and dialect variations:

4 phones sequences

CS 1571 Intro to AI

Speech recognition

HMM model of phones $P(\mathbf{s} = s_1 s_2 ... s_r \mid phone = p_q)$

Example:

Phone HMM for [m]:

Many possible feature sequences:

Output probabilities for the phone HMM:

Onset:	Mid:	End:
C1: 0.5	C3: 0.2	C4: 0.1
C2: 0.2	C4: 0.7	C6: 0.5
C3: 0.3	C5: 0.1	C7: 0.4

- Finding the most probable path through an HMM for [m]
- Example: sequence: C1 C3 C4 C6

CS 1571 Intro to AI

Natural language processing

Goal: Analyze and interpret the text in the natural language

- Input: text sentences.
 - Speech recognition system
 - Optical character recognition (OCR)
 - Documents in the electronic form
- Output:
 - Knowledge extracted from the text that supports various inferences
- Processing (multi-step process):
 - Syntactic interpretation (parsing)
 - Semantic interpretation
 - Disambiguation & Incorporation

Natural language processing

Syntactic interpretation (parsing):

- Input: a sentence
- Output: a parse tree
- Uses grammar models for parsing the sentence to phrases and terminal symbols
- Example: 'The wumpus is dead'

• Sometimes we have more than one possible parse. **Stochastic grammars** (quantify the goodness of possible parses)

CS 1571 Intro to AI

Natural language processing

- Semantic interpretation:
 - input: a parse tree
 - output: a set of meanings, e.g. in First order logic (FOL)
- Example: 'The wumpus is dead'
 - Gives two possible semantic interpretations:

¬Alive(Wumpus, Now)
Tired(Wumpus, Now)

- Disambiguation:
 - chooses the most probable interpretation
- Incorporation:
 - The extracted knowledge is checked for consistency against other pieces of knowledge before it is incorporated into the KB

Image processing and vision

- Classic image processing problem:
 - Analysis of image and extraction of information from the image
 - Can be used in many applications:
 - Scene analysis
 - Manipulation and navigation tasks
 - Image retrieval
- Other image processing problems:
 - Image enhancement: degraded image should be improved to restore particular features
 - Storage and Compression: Large amounts of data need to be archived or transmitted
 - Visualization

CS 1571 Intro to AI

Image processing

Image is defined by

- a light intensity function over the image plane
- (Continuous) image is typically discretized
- Image plane is discretized into:
 - Pixels arranged on the rectangular grid
 - Resolution of the grid determines the spatial quality of the discretization
- Light intensity values are discretized into:
 - Integers values in some interval
- Typical (black and white) image input:
 - 512x512 pixels
 - − Light intensity: 8 bits − 512 types of gray

Image processing

Analysis of image and extraction of information from the image

- Segmentation:
 - Division of the image to meaningful entities in the scene
 - Relies heavily on edge detection algorithms

CS 1571 Intro to AI

Image processing and vision

Analysis of image and extraction of information from the image

- To recognize (identify) the object from the image we need to compare it with the class pattern
- **Problem:** The position, orientation and the scale of the object in the scene may vary
- Solution: Use a set of basic transformations:
 - scaling,
 - translation,
 - rotation of the object
 - Transformations are relatively easy for 2D objects, much harder for 3-D objects
- Other problems: light sources and shadows

Image processing and vision

- More complex task: analysis of a sequence of related images (videos)
- Image registration: the process of measuring visual motion between images.
- When this is useful:
 - Video commercial skip
 - Detection and tracking of objects in the real world

