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Multi-layer neural networks
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Linear units

Logistic regressionLinear regression
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Limitations of basic linear units

Logistic regressionLinear regression

∑

1

)|1( xyp =

0w

1w
2w

dw

z
∑

1

0w

1w
2w

dw

)(xf

Function linear in inputs !! Linear decision boundary!!
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Regression with the linear model.

Limitation: linear hyper-plane only
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Regression with the linear model.

Limitation: linear hyper-plane only
a non-linear surface can be better 
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Classification with the linear model.   

Logistic regression model defines a linear decision boundary
• Example: 2 classes (blue and red points)
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Linear decision boundary
• logistic regression model is not optimal, but not that bad
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When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of linear units. 
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• Logistic regression does not work for parity functions
-no linear decision boundary exists

Solution: a model of a non-linear decision boundary
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Extensions of simple linear units
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• use feature (basis) functions to model nonlinearities
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Example. Regression with polynomials.
Regression with polynomials of degree m
• Data points: pairs of 
• Feature functions: m feature functions

• Function to learn:
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Learning with extended linear units
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Feature (basis) functions model nonlinearities

Important property:
• Learning of weights problem is the same as it was for  

the linear units
• Trick: we have changed the inputs – the weights are still

linear in the new input
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Function to learn:

On line gradient update for the <x,y> pair

Gradient updates are of the same form as in the linear and logistic 
regression models
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Example: Regression with polynomials of degree m

• On line update for <x,y> pair
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Example. Regression with polynomials.
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Multi-layered neural networks

• Alternative way to introduce nonlinearities to 
regression/classification models

• Idea: Cascade several simple neural models with logistic 
units. Much like neuron connections.
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Multilayer neural network

Hidden layer Output layerInput layer

Cascades multiple logistic regression units
Also called a multilayer perceptron (MLP)
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Example: (2 layer) classifier with non-linear decision boundaries
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Multilayer neural network

• Models non-linearities through logistic regression units
• Can be applied to both regression and binary classification

problems 
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Multilayer neural network

• Non-linearities are modeled using multiple hidden logistic 
regression units (organized in layers)

• Output layer determines whether it is a regression and binary 
classification problem
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Learning with MLP

• How to learn the parameters of the neural network?
• Online gradient descent algorithm

– Weight updates based on

• We need to compute gradients for weights in all units
• Can be computed in one backward sweep through the net !!!

• The process is called back-propagation
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Backpropagation
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Backpropagation
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Learning with MLP

• Online gradient descent algorithm
– Weight update:
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- j-th output of the (k-1) layer

- derivative computed via backpropagation
α - a learning rate
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Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights
for i=1:1: number of iterations

do      select a data point Du=<x,y> from D
set 
compute outputs                for each unit
compute derivatives           via backpropagation
update all weights (in parallel)

end for
return weights w

)(, kw ji

i/1=α

)1()()()( ,, −−← kxkkwkw jijiji αδ

)(kx j

)(kiδ

CS 1571 Intro to AI

Xor Example. 
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• No linear decision boundary
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Xor example. Linear unit
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Xor example.  
Neural network with  2 hidden units
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Xor example. 
Neural network with 10 hidden units
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MLP in practice

• Optical character recognition – digits 20x20
– Automatic sorting of mails
– 5 layer network with multiple output functions

10 outputs (0,1,…9)
…

20x20 = 400  inputs

5          10                   3000

4        300                   1200

3       1200                50000

2         784                  3136

1        3136               78400

layer      Neurons        Weights


