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Supervised learning

Data: D={d,,d,,...d,} asetofnexamples
d; =<X;,y; >

X, is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping [ XY
st. ¥, = f(x;) forall i=1,.,n
Two types of problems:
* Regression: Y is continuous
Example: earnings, product orders — company stock price

* Classification: Y is discrete

Example: temperature, heart rate — disease

Today: binary classification problems
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Binary classification
* Twoclasses Y ={0,1}

* Our goal is to learn how to classify correctly two types of
examples

— Class 0 — labeled as 0,
— Class 1 —labeled as 1
« We would like to learn  f: X — {0,1}

* First step: we need to devise a model of the function f

* Inspiration: neuron (nerve cells)

CS 1571 Intro to Al

Neuron

* neuron (nerve cell) and its activities
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Neuron-based binary classification model
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Neuron-based binary classification

¢  Function

we want to learn f : X - {0,1}
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Binary classification

* Instead of learning the mapping to discrete values 0,1
f:X - {01}
+ It is easier to learn a probabilistic function
X - [0,1]
— where f” describes the probability of a class 1 given x

p(y=1[x)
» Transformation back to discrete values:

If p(y=1|x)=1/2 then choose 1
Else choose 0

* Logistic regression model uses a probabilistic function
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Logistic regression

* Logistic regression:
fx)=p(y=1]x,w) = g(w, +wx" +.wx
where w are parameters of the models

(k))

and g(z) is a logistic function g(z) =1/(1+e )

Bias term —— 1 Logistic function
Wo
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X Wl\' z
P S Q
Input vector < X
. Wk
X
g x(k)
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Logistic function
L
(1+e™)

+ also referred to as sigmoid function

function g(2) =

 replaces threshold function with smooth switching
* takes a real number and outputs the number in the interval [0,1]
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Logistic regression. Decision boundary

Logistic regression model defines a linear decision boundary
« Example: 2 classes (blue and red points)

Decision boundary
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Optimization of weights

* Two classes: Y ={0,1}
* Data: D={d,.d,,..d,}
d, =<x,y, >
* We want to find the set of weight w that explain the data the best
— weights that classify correctly as many examples as possible
» Zero-one error function
Error (x,,y,) = {1 SxLW)
0 f(x,w)=y,
* Error we would like to minimize: E, ,,(Error (x,y))
» The error is minimized if we choose:
y=1if p(y=1|xw)>p(y=0[x,w)
y =0 otherwise
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Logistic regression. Parameter optimization.

» The error is minimized if we choose:

y=1 it py=1[x,w)>p(y=0[|x,w)
y =0 otherwise

* We construct a probabilistic version of the error function based
on the likelihood of the data
L(D,w)=P(D[w)
* Likelihood of the data

— Measures the goodness of fit
Error (D,w)=-L(D,w)

Inverse optimization problem
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Logistic regression: parameter learning.

Assume D, =<Xx,,y, >
Let ,
M= p(y, =1x,w) =g(z,) = g(w x)
Then . .,
L(D,w) = |'| P(y =y x,w)=[]u"A-p)™
Find weights w that maximize the likelihood of outputs
— log-likelihood trick The optimal weights are the same for
both the likelihood and the log-likelihood

i=1

I(D,W) = 10g |_| /,Il.yi (1 - l[,[l,)]_y’ = Z log ﬂ[y’ (1 —ﬂi)l_yi —
i=1

n

= Z yilog/ui +(1_yi)10g(1_/'1i) :z _‘]onlinc (Di7w)

i=1 i=1
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Logistic regression: parameter estimation
Log likelihood

I(D,w) = Z = J oniine (Di,W) = Z Vi 10g/.1i +(1_yi)10g(1_,ui)
i=1 i=1

On-line component of the log-likelihood

_Jonline (Di’w) = y,'log ,u,- +(1_yl-)10g( 1_/11.)

Derivatives of the online error component (in terms of
weights)
0
Jonline (Di’w) = _(yi - f(Xi,W))
ow,

0
a Jonline (Di’w) = _(yi - f(xi’w))xi,j
w

J
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Logistic regression. Online gradient.

* We want to optimize the log-likelihood

* On-line gradient update for the jth weight and ith step
i i- 0
wj( . wj( Y —a ——[Error (D, W) | o]
ow,
* ()th update for the logistic regression D =< x , y, >

wo ™« w T +a (i) (y, - f(x, WY

(i) (i-1) ; -
w e w T a i)y, - f(x,w T )

a - annealed learning rate (depends on the number of updates)

The same, easy update rule as used in the linear regression !!!
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Online updates

Linear regression Logistic regression
f(x)=w'x S =p(y=1|x,w)=g(W'x)
1
M
2
X L S
W,
X
: Wd . w,
Xy X,

On-line gradient update: On-line gradient update:

The same

W wHa(y— f(x,w))x v —wt+a(y—f(x,w))x
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Online logistic regression algorithm

Online-logistic-regression (D, number of iterations)
initialize weights  w,, w,,w,...w,
for i=1:1: number of iterations
do select a data point d=<x,y> from D
set a=1/i
update weights (in parallel)

w, =w, +aly = f(x,w)]

w,=w, +aly _f(X,W)]xj
end for
return weights
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Online algorithm. Example.




Online algorithm. Example.

3.5934 w,=6.9126 bias= -3.6709

iy =
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Online algorithm. Example.

39,7033 bias=-20.0644

19,9144 wy=

Wy =
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Limitations of basic linear units

Linear regression Logistic regression
f(x)=w'x SX)=p(y=1x,w)=g(Wx)

M
2
X L S
W,
X
. w, . w,
X, Xy
Function linear in inputs !! Linear decision boundary!!
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Logistic regression. Decision boundary

Logistic regression model defines a linear decision boundary
» Example: 2 classes (blue and red points)

Decision boundary
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Linear decision boundary

» Example when logistic regression model is not optimal, but
not that bad

Decision boundary
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When logistic regression fails?

« Example in which the logistic regression model fails
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Limitations of logistic regression.

* parity function - no linear decision boundary
.
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Extensions of simple linear units

* usc feature (basis) functions to model nonlinearities
Linear regression Logistic regression

fOZwe+ 2w () f(0)=glwy + 2 w,0,(x))

¢, (x) - anarbitrary function of x

The same trick can be done also for the logistic regression
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Extension of simple linear units

« Example: Fitting of a polynomial of degree m
— Data points: pairs of < Xx,y >
— Feature functions:
@(x)=x'
— Function to learn:
Sx,w) =w, + z w,@(x) =w, + z Wixi
i=1 i=1
— On line update for <x,y> pair

wy =w, +a(y = f(x,w))

W, =W, +a(y= £ (x W) ()
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Multi-layered neural networks

Alternative way to introduce nonlinearities to
regression/classification models

Idea: Cascade several simple neural models (based on logistic
regression). Much like neuron connections.

Axonal arborization

Axon frem ancther cell
Synapse

Deendrite: Axon

Cell body or Soma

Next lecture !!!

CS 1571 Intro to Al




