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Logistic regression. 

CS 1571 Intro to AI

Supervised learning

Data:                                     a set of n examples                                 

is input vector, and y is desired output (given by a teacher)
Objective: learn the mapping 

s.t.
Two types of problems:
• Regression: Y is continuous

Example: earnings, product orders       company stock price
• Classification: Y is discrete

Example: temperature, heart rate        disease

Today:  binary classification problems
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Binary classification

• Two classes
• Our goal is to learn how to classify correctly two types of 

examples  
– Class 0 – labeled as 0, 
– Class 1 – labeled as 1

• We would like to learn

• First step: we need to devise a model of the function f

• Inspiration: neuron (nerve cells)
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Neuron

• neuron (nerve cell) and its activities
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Neuron-based binary classification model
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Neuron-based binary classification

• Function we want to learn
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Binary classification

• Instead of learning the mapping to discrete values 0,1 

• It is easier to learn a probabilistic function

– where f’ describes the probability of a class 1 given x

• Transformation back to discrete values:

• Logistic regression model uses a probabilistic function 
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Logistic regression

• Logistic regression:
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where w are parameters of the models
and g(z) is a logistic function
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Logistic function
function

• also referred to as sigmoid function
• replaces threshold function with smooth switching 
• takes a real number and outputs the number in the interval [0,1]
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Logistic regression.  Decision boundary

Logistic regression model defines a linear decision boundary
• Example: 2 classes (blue and red points)
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Optimization of weights

• Two classes:
• Data: 

• We want to find the set of weight w that explain the data the best 
– weights that classify correctly as many examples as possible

• Zero-one error function 

• Error we would like to minimize:
• The error is minimized if we choose:
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Logistic regression. Parameter optimization.

• The error is minimized if we choose:

• We construct a probabilistic version of the error function based
on the likelihood of the data

• Likelihood of the data
– Measures the goodness of fit
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• Assume                              
• Let

• Then

• Find weights w that maximize the likelihood of outputs
– log-likelihood trick The optimal weights are the same for 

both the likelihood and the log-likelihood

Logistic regression: parameter learning.
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Logistic regression: parameter estimation
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• Log likelihood

• On-line component of the log-likelihood

• Derivatives of the online error component (in terms of 
weights)
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Logistic regression. Online gradient.

• We want to optimize the log-likelihood
• On-line gradient  update for the jth weight and ith step

• (i)th update for the logistic regression
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α - annealed learning rate (depends on the number of updates)
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Online updates

Logistic regressionLinear regression
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Online logistic regression algorithm

Online-logistic-regression (D, number of iterations)
initialize weights
for i=1:1: number of iterations

do      select a data point d=<x,y> from D
set 
update weights (in parallel)

end for
return weights
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Online algorithm. Example.
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Online algorithm. Example.
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Online algorithm. Example.
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Limitations of basic linear units

Logistic regressionLinear regression
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Logistic regression.  Decision boundary

Logistic regression model defines a linear decision boundary
• Example: 2 classes (blue and red points)
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Linear decision boundary
• Example when logistic regression model is not optimal, but 

not that bad
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When logistic regression fails?

• Example in which the logistic regression model fails

-4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

5



13

CS 1571 Intro to AI

Limitations of logistic regression. 
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Extensions of simple linear units
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The same trick can be done also for the logistic regression

)(xjφ - an arbitrary function of x

• use feature (basis) functions to model nonlinearities
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Extension of simple linear units

• Example: Fitting of a polynomial of degree m
– Data points: pairs of 
– Feature functions:

– Function to learn:

– On line update for <x,y> pair
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Multi-layered neural networks

• Alternative way to introduce nonlinearities to 
regression/classification models

• Idea: Cascade several simple neural models (based on logistic 
regression). Much like neuron connections.

Next lecture !!!


