CS 1571 Introduction to AI Lecture 25

Logistic regression.

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Supervised learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of *n* examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,..., n$

Two types of problems:

• Regression: Y is continuous

Example: earnings, product orders → company stock price

• Classification: Y is discrete

Example: temperature, heart rate → disease

Today: binary classification problems

Binary classification

- **Two classes** $Y = \{0,1\}$
- Our goal is to learn how to classify correctly two types of examples
 - Class 0 labeled as 0,
 - Class 1 labeled as 1
- We would like to learn $f: X \to \{0,1\}$
- First step: we need to devise a model of the function f
- Inspiration: neuron (nerve cells)

CS 1571 Intro to AI

Neuron

neuron (nerve cell) and its activities

Neuron-based binary classification

• Function we want to learn $f: X \to \{0,1\}$

Binary classification

• Instead of learning the mapping to discrete values 0,1

$$f: X \rightarrow \{0,1\}$$

• It is easier to learn a probabilistic function

$$f': X \rightarrow [0,1]$$

– where f' describes the probability of a class 1 given x

$$p(y=1|\mathbf{x})$$

• Transformation back to discrete values:

If
$$p(y=1 | \mathbf{x}) \ge 1/2$$
 then choose 1
Else choose 0

• Logistic regression model uses a probabilistic function

CS 1571 Intro to AI

Logistic regression

• Logistic regression:

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 x^{(1)} + ... w_k x^{(k)})$$

where \mathbf{w} are parameters of the models
and $g(z)$ is a **logistic function** $g(z) = 1/(1 + e^{-z})$

Logistic function

$$g(z) = \frac{1}{(1 + e^{-z})}$$

- also referred to as sigmoid function
- · replaces threshold function with smooth switching
- takes a real number and outputs the number in the interval [0,1]

Logistic regression. Decision boundary

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)

Optimization of weights

- **Two classes:** $Y = \{0,1\}$
- **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \langle \mathbf{x}_i, y_i \rangle$
- We want to find the set of weight w that explain the data the best
 weights that classify correctly as many examples as possible
- Zero-one error function

Error
$$(x_i, y_i) = \begin{cases} 1 & f(\mathbf{x}_i, \mathbf{w}) \neq y_i \\ 0 & f(\mathbf{x}_i, \mathbf{w}) = y_i \end{cases}$$

- Error we would like to minimize: $E_{(x,y)}(Error(x,y))$
- The error is minimized if we choose:

$$y = 1$$
 if $p(y = 1 \mid \mathbf{x}, \mathbf{w}) > p(y = 0 \mid \mathbf{x}, \mathbf{w})$
 $y = 0$ otherwise

CS 1571 Intro to AI

Logistic regression. Parameter optimization.

• The error is minimized if we choose:

$$y = 1$$
 if $p(y = 1 | \mathbf{x}, \mathbf{w}) > p(y = 0 | \mathbf{x}, \mathbf{w})$
 $y = 0$ otherwise

 We construct a probabilistic version of the error function based on the likelihood of the data

$$L(D, \mathbf{w}) = P(D \mid \mathbf{w})$$

- Likelihood of the data
 - Measures the goodness of fit

$$Error(D, \mathbf{w}) = -L(D, \mathbf{w})$$

Inverse optimization problem

Logistic regression: parameter learning.

- Assume $D_i = \langle \mathbf{x}_i, y_i \rangle$
- Let

$$\mu_i = p(y_i = 1 \mid \mathbf{x}_i, \mathbf{w}) = g(z_i) = g(\mathbf{w}^T \mathbf{x})$$

Then

$$L(D, \mathbf{w}) = \prod_{i=1}^{n} P(y = y_i \mid \mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1 - y_i}$$

- Find weights w that maximize the likelihood of outputs
 - log-likelihood trick The optimal weights are the same for both the likelihood and the log-likelihood

$$l(D, \mathbf{w}) = \log \prod_{i=1}^{n} \mu_{i}^{y_{i}} (1 - \mu_{i})^{1 - y_{i}} = \sum_{i=1}^{n} \log \mu_{i}^{y_{i}} (1 - \mu_{i})^{1 - y_{i}} =$$

$$= \sum_{i=1}^{n} y_{i} \log \mu_{i} + (1 - y_{i}) \log(1 - \mu_{i}) = \sum_{i=1}^{n} -J_{\text{online}} (D_{i}, \mathbf{w})$$

CS 1571 Intro to AI

Logistic regression: parameter estimation

· Log likelihood

$$l(D, \mathbf{w}) = \sum_{i=1}^{n} -J_{\text{online}}(D_i, \mathbf{w}) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)$$

· On-line component of the log-likelihood

$$-J_{\text{online}}(D_i, \mathbf{w}) = y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)$$

Derivatives of the online error component (in terms of weights)

$$\frac{\partial}{\partial w_0} J_{\text{online}} (D_i, \mathbf{w}) = -(y_i - f(\mathbf{x}_i, \mathbf{w}))$$

$$\frac{\partial}{\partial w_i} J_{\text{online}} (D_i, \mathbf{w}) = -(y_i - f(\mathbf{x}_i, \mathbf{w})) x_{i,j}$$

Logistic regression. Online gradient.

- We want to optimize the log-likelihood
- On-line gradient update for the jth weight and ith step $w_{j}^{(i)} \leftarrow w_{j}^{(i-1)} \alpha \frac{\partial}{\partial w_{i}} [Error(D_{i}, \mathbf{w})|_{w^{(i-1)}}]$
- (i)th update for the logistic regression $D_i = \langle \mathbf{x}_i, y_i \rangle$

$$w_0^{(i1)} \leftarrow w_0^{(i-1)} + \alpha(i)(y_i - f(\mathbf{x}_i, \mathbf{w}^{(i-1)}))$$

$$\vdots$$

$$w_i^{(i)} \leftarrow w_i^{(i-1)} + \alpha(i)(y_i - f(\mathbf{x}_i, \mathbf{w}^{(i-1)}))x_{i,j}$$

 α - annealed learning rate (depends on the number of updates)

The same, easy update rule as used in the linear regression !!!

CS 1571 Intro to AI

Online updates

Linear regression

$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ $x_1 \qquad w_2 \qquad \sum_{w_2} f(\mathbf{x})$ $x_2 \qquad w_d \qquad x_d$

Logistic regression

$$f(\mathbf{x}) = p(y=1|\mathbf{x}, \mathbf{w}) = g(\mathbf{w}^T \mathbf{x})$$

$$x_1 \qquad x_2 \qquad y_2 \qquad x_d$$

$$x_d \qquad x_d$$

On-line gradient update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (y - f(\mathbf{x}, \mathbf{w}))\mathbf{x}$$

The same

On-line gradient update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (y - f(\mathbf{x}, \mathbf{w}))\mathbf{x}$$

Online logistic regression algorithm

```
Online-logistic-regression (D, number of iterations)
initialize weights w_0, w_1, w_2 \dots w_k
for i=1:1: number of iterations
do select a data point d=\langle \mathbf{x}, \mathbf{y} \rangle from D
set \alpha=1/i
update weights (in parallel)
w_0 = w_0 + \alpha[\mathbf{y} - f(\mathbf{x}, \mathbf{w})]
```

$$w_j = w_j + \alpha [y - f(\mathbf{x}, \mathbf{w})] x_j$$

end for
return weights

Limitations of basic linear units

Linear regression

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Logistic regression

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(\mathbf{w}^T \mathbf{x})$$

Function linear in inputs!!

Linear decision boundary!!

CS 1571 Intro to AI

Logistic regression. Decision boundary

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)

Linear decision boundary

• Example when logistic regression model is not optimal, but not that bad

When logistic regression fails?

• Example in which the logistic regression model fails

Limitations of logistic regression.

parity function - no linear decision boundary

CS 1571 Intro to AI

Extensions of simple linear units

• use feature (basis) functions to model nonlinearities

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x})$$

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x})$$

$$Logistic regression$$

$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}))$$

 $\phi_j(\mathbf{x})$ - an arbitrary function of \mathbf{x}

The same trick can be done also for the logistic regression

Extension of simple linear units

- Example: Fitting of a polynomial of degree m
 - Data points: pairs of $\langle x, y \rangle$
 - Feature functions:

$$\phi_i(x) = x^i$$

- Function to learn:

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^{m} w_i \phi_i(x) = w_0 + \sum_{i=1}^{m} w_i x^i$$

- On line update for $\langle x, y \rangle$ pair

$$w_0 = w_0 + \alpha(y - f(\mathbf{x}, \mathbf{w}))$$

•

$$w_j = w_j + \alpha(y - f(\mathbf{x}, \mathbf{w}))\phi_j(\mathbf{x})$$

CS 1571 Intro to AI

Multi-layered neural networks

- Alternative way to introduce nonlinearities to regression/classification models
- Idea: Cascade several simple neural models (based on logistic regression). Much like neuron connections.

Next lecture !!!