CS 1571 Introduction to AI Lecture 19

Inference in Bayesian belief networks

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

• A and B are conditionally independent given C

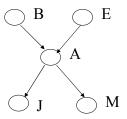
$$P(A, B | C) = P(A | C)P(B | C)$$

 $P(A | C, B) = P(A | C)$

Bayesian belief networks (general)

Two components: $B = (S, \Theta_S)$

- · Directed acyclic graph
 - Nodes correspond to random variables
 - (Missing) links encode independences



Parameters

 Local conditional probability distributions for every variable-parent configuration

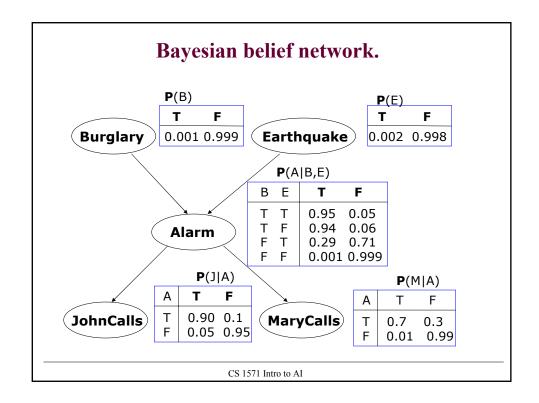
$$\mathbf{P}(X_i \mid pa(X_i))$$

Where:

$$pa(X_i)$$
 - stand for parents of X_i

В	Е	Т	F
Т	Т	0.95	0.05
Τ	F	0.94	0.06
F	Τ	0.29	0.71
F	F	0.001	0.999

P(A|B,E)



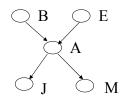
Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables B=T, E=T, A=T, J=T, M=F



Then its probability is:

$$P(B=T, E=T, A=T, J=T, M=F) = P(B=T)P(E=T)P(A=T|B=T, E=T)P(J=T|A=T)P(M=F|A=T)$$

CS 1571 Intro to AI

Parameter complexity problem

• In the BBN the full joint distribution is

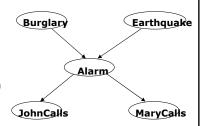
$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

What did we save?

Parameters:

full joint: $2^5 = 32$

BBN:
$$2^3 + 2(2^2) + 2(2) = 20$$



Parameters to be defined:

full joint:
$$2^5 - 1 = 31$$

BBN:
$$2^2 + 2(2) + 2(1) = 10$$

Model acquisition problem

The structure of the BBN

- typically reflects causal relations
 (BBNs are also sometime referred to as causal networks)
- Causal structure is intuitive in many applications domain and it is relatively easy to define to the domain expert

Probability parameters of BBN

- are conditional distributions relating random variables and their parents
- Complexity is much smaller than the full joint
- It is much easier to obtain such probabilities from the expert or learn them automatically from data

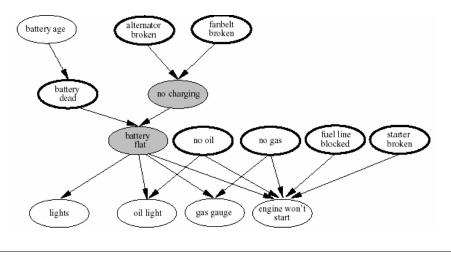
CS 1571 Intro to AI

BBNs built in practice

- In various areas:
 - Intelligent user interfaces (Microsoft)
 - Troubleshooting, diagnosis of a technical device
 - Medical diagnosis:
 - Pathfinder (Intellipath)
 - CPSC
 - Munin
 - QMR-DT
 - Collaborative filtering
 - Military applications
 - Business and finance
 - Insurance, credit applications

Diagnosis of car engine

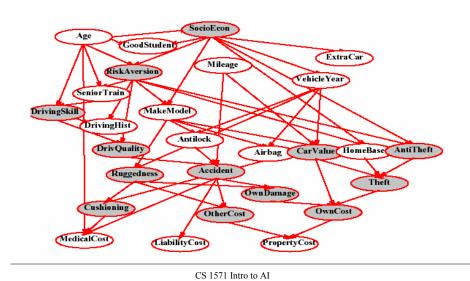
• Diagnose the engine start problem

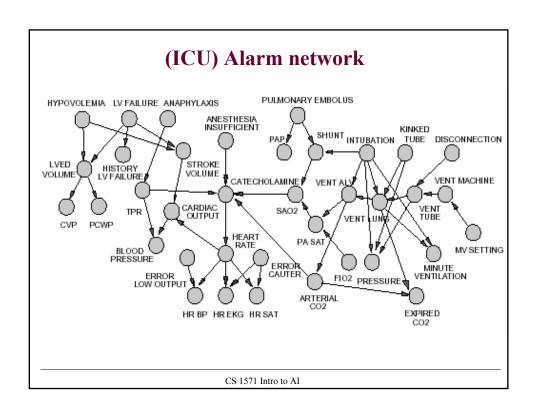


CS 1571 Intro to AI

Car insurance example

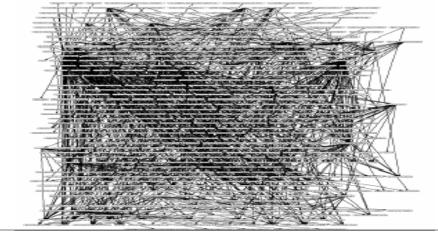
• Predict claim costs (medical, liability) based on application data





CPCS

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (University of Pittsburgh)
- 422 nodes and 867 arcs

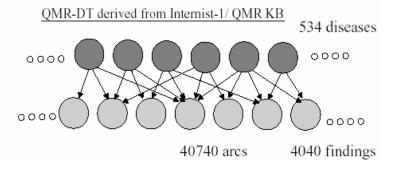


CS 1571 Intro to AI

QMR-DT

• Medical diagnosis in internal medicine

Bipartite network of disease/findings relations



CS 1571 Intro to AI

Inference in Bayesian networks

- BBN models compactly the full joint distribution by taking advantage of existing independences between variables
- Simplifies the acquisition of a probabilistic model
- But we are interested in solving various **inference tasks**:
 - Diagnostic task. (from effect to cause)

 $\mathbf{P}(Burglary \mid JohnCalls = T)$

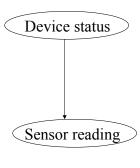
- Prediction task. (from cause to effect)

 $\mathbf{P}(JohnCalls \mid Burglary = T)$

- Other probabilistic queries (queries on joint distributions).
 P(Alarm)
- Main issue: Can we take advantage of independences to construct special algorithms and speeding up the inference?

Simple BBN. Inference example.

- **Device** (equipment):
 - operating *normally* or *malfunctioning*.
- A sensor indirectly monitors the operation of the device
 - Sensor reading is either high or low



P(Device status)

normal	malfunctioning	
0.9	0.1	

P(Sensor reading| Device status)

Device\Sensor	high	low
normal	0.1	0.9
malfunctioning	0.6	0.4

CS 1571 Intro to AI

Diagnostic inference. Example.

• **Diagnostic inference:** compute the probability of device operating normally given the sensor reading is high

$$P(D = normal \mid S = high) = \frac{P(D = normal, S = high)}{P(S = high)}$$

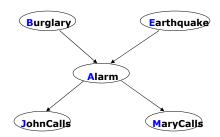
$$P(D = normal, S = high) = P(S = high | D = normal).P(D = normal)$$

$$P(S = high) = \sum_{j=\{normal, malfunc\}} P(S = high, D = j).$$

$$P(S = high) = P(S = high \mid D = normal)P(D = normal) +$$

 $+ P(S = high \mid D = malfunc)P(D = malfunc)$

- Bad news:
 - Exact inference problem in BBNs is NP-hard (Cooper)
 - Approximate inference is NP-hard (Dagum, Luby)
- But very often we can achieve significant improvements
- Assume our Alarm network



• Assume we want to compute: P(J = T)

CS 1571 Intro to AI

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: ? Number of products: ?

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15 Number of products: ?

CS 1571 Intro to AI

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15

Number of products: 16*4=64

Approach 2. Interleave sums and products

• Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) [\sum_{m \in T, F} P(M = m \mid A = a)] [\sum_{b \in T, F} P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)] [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) P($$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=? Number of products: 2*[2+2*(1+2*1)]=?

CS 1571 Intro to AI

Inference in Bayesian networks

Approach 2. Interleave sums and products

• Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) [\sum_{m \in T, F} P(M = m \mid A = a)] [\sum_{b \in T, F} P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9Number of products: 2*[2+2*(1+2*1)]=?

Approach 2. Interleave sums and products

• Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{\alpha \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right] \right]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9Number of products: 2*[2+2*(1+2*1)]=16

CS 1571 Intro to AI

Inference in Bayesian networks

- The smart interleaving of sums and products can help us to speed up the computation of joint probability queries
- What if we want to compute: P(B = T, J = T)

$$P(B = T, J = T) = \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{m \in T, F} P(M = m | A = a) \right] P(B = T) \left[\sum_{e \in T, F} P(A = a | B = T, E = e) P(E = e) \right]$$

$$P(J = T) = \bigoplus_{a \in T, F} P(J = T | A = a) \left[\sum_{m \in T, F} P(M = m | A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a | B = b, E = e) P(E = e) \right] \right]$$

- A lot of shared computation
 - Smart cashing of results can save the time for more queries

- The smart interleaving of sums and products can help us to speed up the computation of joint probability queries
- What if we want to compute: P(B = T, J = T)

$$P(B = T, J = T) = \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{m \in T, F} P(M = m | A = a) \right] \left[P(B = T) \left[\sum_{e \in T, F} P(A = a | B = T, E = e) P(E = e) \right] \right]$$

$$P(J = T) = \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{m \in T, F} P(M = m | A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a | B = b, E = e) P(E = e) \right] \right]$$

- A lot of shared computation
 - Smart cashing of results can save the time if more queries

CS 1571 Intro to AI

Inference in Bayesian networks

- When cashing of results becomes handy?
- What if we want to compute a diagnostic query:

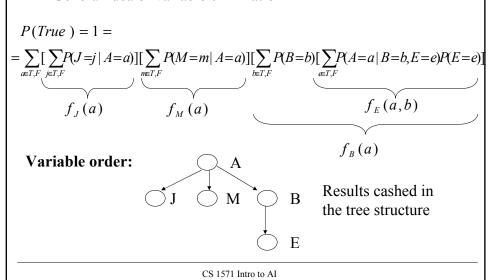
$$P(B = T \mid J = T) = \frac{P(B = T, J = T)}{P(J = T)}$$

- Exactly probabilities we have just compared !!
- There are other queries when cashing and ordering of sums and products can be shared and saves computation

$$\mathbf{P}(B \mid J = T) = \frac{\mathbf{P}(B, J = T)}{P(J = T)} = \alpha \mathbf{P}(B, J = T)$$

• General technique: Variable elimination

General idea of variable elimination



Inference in Bayesian network

- Exact inference algorithms:
 - Symbolic inference (D'Ambrosio)
 - Recursive decomposition (Cooper)
 - Message passing algorithm (Pearl)
 - Clustering and joint tree approach (Lauritzen, Spiegelhalter)
 - Arc reversal (Olmsted, Schachter)
- Approximate inference algorithms:
 - Monte Carlo methods:
 - · Forward sampling, Likelihood sampling
 - Variational methods