CS 1571 Introduction to AI Lecture 18

Bayesian belief networks

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Administration

- Problem set 6 is due today
- Problem set 7 is out:
 - Due on November 5
 - No programming part
- Midterms:
 - See the instructor
- PS 1-5:
 - See the TA

Modeling uncertainty with probabilities

- We need to define the full joint probability distribution over random variables defining the domain of interest
- With the known full joint we are able to handle an arbitrary probabilistic inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember O(dⁿ) numbers.
 - n number of random variables, d number of values
- Inference (time) complexity. To compute some queries requires $O(d^n)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

CS 1571 Intro to AI

Medical diagnosis example.

- Space complexity.
 - Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
 WBCcount (3: high, normal, low), paleness (2: T,F)
 - Number of assignments: 2*2*2*3*2=48
 - We need to define at least 47 probabilities.
- Time complexity.
 - Assume we need to compute the marginal of Pneumonia=T from the full joint distribution

P(Pneumonia = T) =

- $= \sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, n, l} \sum_{u \in T, F} P(Pneumonia = T, Fever = i, Cough = j, WBCcount = k, Pale = u)$
 - Sum over: 2*2*3*2=24 combinations

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

• A and B are conditionally independent given C

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid C, B) = P(A \mid C)$$

CS 1571 Intro to AI

Bayesian belief networks (general)

Two components: $B = (S, \Theta_S)$

- Directed acyclic graph
 - Nodes correspond to random variables
 - (Missing) links encode independences

Parameters

 Local conditional probability distributions for every variable-parent configuration

$$\mathbf{P}(X_i \mid pa(X_i))$$

Where:

$$pa(X_i)$$
 - stand for parents of X_i

- (1-7-7				
	В	Е	Т	F
	Т	Т	0.95	0.05
	Τ	F	0.94	0.06
	F	Т	0.29	0.71
	F	F	0.001	0.999

P(AIB.E)

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables

$$B = T, E = T, A = T, J = T, M = F$$

Then its probability is:

$$P(B=T, E=T, A=T, J=T, M=F) = P(B=T)P(E=T)P(A=T | B=T, E=T)P(J=T | A=T)P(M=F | A=T)$$

Ε

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent P(A,B) = P(A)P(B)
- A and B are conditionally independent given C

$$P(A \mid C, B) = P(A \mid C)$$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

• The graph structure implies the decomposition !!!

CS 1571 Intro to AI

Independences in BBNs

3 basic independence structures:

1. JohnCalls is independent of Burglary given Alarm

$$P(J \mid A, B) = P(J \mid A)$$

$$P(J, B \mid A) = P(J \mid A)P(B \mid A)$$

CS 1571 Intro to AI

2. Burglary **is independent** of Earthquake (not knowing about the Alarm) P(B, E) = P(B)P(E)

But Burglary and Earthquake **become dependent** once I know the Alarm !!

3. MaryCalls is independent of JohnCalls given Alarm

$$P(J \mid A, M) = P(J \mid A)$$

$$P(J, M \mid A) = P(J \mid A)P(M \mid A)$$

CS 1571 Intro to AI

Independences in BBN

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation
- D-separation and independence
 - Let X,Y and Z be three sets of nodes
 - If X and Y are d-separated by Z, then X and Y are conditionally independent given Z
- D-separation:
 - A is d-separated from B given C if every undirected path between them is **blocked**
- Path blocking
 - 3 cases that expand on the three basic independence structures

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

• 1. Path blocking with a linear substructure

CS 1571 Intro to AI

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

• 2. Path blocking with the wedge substructure

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

• 3. Path blocking with the vee substructure

CS 1571 Intro to AI

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls

?

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) ?

CS 1571 Intro to AI

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) F

F

Burglary and RadioReport are independent given Earthquake

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls ?

CS 1571 Intro to AI

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) **F**
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls F

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- So how did we get to local parameterizations?

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,..n} \mathbf{P}(X_i \mid pa(X_i))$$

• The decomposition is implied by the set of independences encoded in the belief network.

CS 1571 Intro to AI

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$=P(J=T | B=T, E=T, A=T, M=F)P(B=T, E=T, A=T, M=F)$$

 $=P(J=T | A=T)P(B=T, E=T, A=T, M=F)$

CS 1571 Intro to AI

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J = T | B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T | A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F | A = T)P(B = T, E = T, A = T)$$

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J=T | B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$$

$$= P(J=T | A=T) P(B=T, E=T, A=T, M=F)$$

$$P(M=F | B=T, E=T, A=T) P(B=T, E=T, A=T)$$

$$P(M=F | A=T) P(B=T, E=T, A=T)$$

$$P(A=T | B=T, E=T) P(B=T, E=T)$$

CS 1571 Intro to AI

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$=P(J=T | B=T, E=T, A=T, M=F)P(B=T, E=T, A=T, M=F)$$

$$=\underline{P(J=T | A=T)P(B=T, E=T, A=T, M=F)}$$

$$P(M=F | B=T, E=T, A=T)P(B=T, E=T, A=T)$$

$$P(M=F | A=T)P(B=T, E=T, A=T)$$

$$P(A=T | B=T, E=T)P(B=T, E=T)$$

$$P(B=T)P(E=T)$$

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J=T | B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$$

$$= P(J=T | A=T) P(B=T, E=T, A=T, M=F)$$

$$P(M=F | B=T, E=T, A=T) P(B=T, E=T, A=T)$$

$$P(M=F | A=T) P(B=T, E=T, A=T)$$

$$P(A=T | B=T, E=T) P(B=T, E=T)$$

$$= P(J=T | A=T) P(M=F | A=T) P(A=T | B=T, E=T) P(B=T) P(E=T)$$

CS 1571 Intro to AI

Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions

Parameter complexity problem

• In the BBN the full joint distribution is

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Parameters:

full joint: $2^5 = 32$

BBN:
$$2^3 + 2(2^2) + 2(2) = 20$$

Parameters to be defined:

full joint: $2^5 - 1 = 31$

BBN: $2^2 + 2(2) + 2(1) = 10$

CS 1571 Intro to AI

Model acquisition problem

The structure of the BBN

- typically reflects causal relations
 (BBNs are also sometime referred to as causal networks)
- Causal structure is intuitive in many applications domain and it is relatively easy to define to the domain expert

Probability parameters of BBN

- are conditional distributions relating random variables and their parents
- Complexity is much smaller than the full joint
- It is much easier to obtain such probabilities from the expert or learn them automatically from data