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Bayesian belief networks
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Administration

* Problem set 6 is due today
* Problem set 7 is out:

— Due on November 5

— No programming part

* Midterms:

— See the instructor
- PS1-5:

— See the TA
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Modeling uncertainty with probabilities

* We need to define the full joint probability distribution over
random variables defining the domain of interest

+ With the known full joint we are able to handle an arbitrary
probabilistic inference problem

Problems:

— Space complexity. To store a full joint distribution we
need to remember O(d") numbers.

n —number of random variables, d — number of values
— Inference (time) complexity. To compute some queries
requires O(d")  steps.
— Acquisition problem. Who is going to define all of the
probability entries?
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Medical diagnosis example.

* Space complexity.
— Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
WBCcount (3: high, normal, low), paleness (2: T,F)
— Number of assignments: 2*2%*2*3*2=48
— We need to define at least 47 probabilities.
* Time complexity.
— Assume we need to compute the marginal of Pneumonia=T
from the full joint distribution
P(Pneumonia=T) =
= Z Z Z ZP(Pneumonia:T,Fever=i,Cough:j,WBCcount:k,Pale:u)

ar,F ) T,F% hn T,F

— Sum over: 2*2*3*2=24 combinations
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Bayesian belief networks (BBNs)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

* A and B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A4,B|C)=P(A4|C)P(B|C)
P(4|C,B)=P(4]|C)
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Bayesian belief networks (general)

Two components: B =(S,0) (B E
« Directed acyclic graph \ f
— Nodes correspond to random variables A
— (Missing) links encode independences <>/
J M
* Parameters
— Local conditional probability distributions
for every variable-parent configuration P(AIB,E)
B E T F
P(X; | pa(X,)) T T |0.95 0.05
Where TE|as o
pa(X;) - stand for parents of X, F F | 0.0010.999
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Bayesian belief network.

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
P(A|B,E)
/ BE| T F

T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999

PUIA) \ P(M|A)
Al T F Al T F
T | 0.90 0.1
F | 0.05 0.95

M -
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,, X, X,) = [TP(X, | pa(X,)
i=l,.n

B E
Example: O\ O}D
Assume the following assignment A
of values to random variables :5/ E
B=T,E=T,A=T,J=T,M=F J M

Then its probability is:
PB=T,E=T,A=T,J=T,M=F)=

RB=T)RE=T)RA=T|B=T,E=T\AJ =T| A=T)AM=F| A=T)
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Bayesian belief networks (BBNs)

Bayesian belief networks

* Represents the full joint distribution over the variables more
compactly using the product of local conditionals.

* But how did we get to local parameterizations?
Answer:

* Graphical structure encodes conditional and marginal
independences among random variables

* A and B are independent P(A,B)=P(A4)P(B)
* A and B are conditionally independent given C
P(A|C,B)=P(A4]|C)
P(A,B|C)=P(A|C)P(B|C)

e The graph structure implies the decomposition !!!
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Independences in BBNs

3 basic independence structures:

Burglary

@
o= Catorm

Goncats
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Independences in BBNs

L. Burglary

=

1. JohnCalls is independent of Burglary given Alarm
P(J|A4,B)=P(J | 4)
P(J,B[A4)=P(J|A)P(B|A)
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Independences in BBNs

1. _ 2. 3.
.urg ary ‘a!ﬁb
Catarm

Catorm)

2. Burglary is independent of Earthquake (not knowing about the
Alarm) P(B,E) = P(B)P(E)
But Burglary and Earthquake become dependent once I know
the Alarm !!
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Independences in BBNs

: > :
Earthg @

Goncats

3. MaryCalls is independent of JohnCalls given Alarm
P(J|4,M)=P(J|4)
P(J,M |A)=P(J|AP(M | A)
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Independences in BBN

* BBN distribution models many conditional independence
relations among distant variables and sets of variables

» These are defined in terms of the graphical criterion called d-
separation

* D-separation and independence
— Let X,Y and Z be three sets of nodes

— If X'and Y are d-separated by Z, then X and Y are
conditionally independent given Z

* D-separation :
— A is d-separated from B given C if every undirected path
between them is blocked
* Path blocking

— 3 cases that expand on the three basic independence
structures
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

* 1. Path blocking with a linear substructure

Z
XOr===O—@—O----0 v

] ZinC i
XinA YinB
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

* 2. Path blocking with the wedge substructure

Z
XO————O/Z:C\O-———O Y

Xin A Y in B
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

* 3. Path blocking with the vee substructure
Xin A Y inB

xO-=-=-0  ©O----O7

Z or any of its descendants not in C
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Independences in BBNs

@

Gt \

» Earthquake and Burglary are independent given MaryCalls
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Independences in BBNs

@

\

» Earthquake and Burglary are independent given MaryCalls F
* Burglary and MaryCalls are independent (not knowing Alarm) ?
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Independences in BBNs

@

\

» Earthquake and Burglary are independent given MaryCalls F
* Burglary and MaryCalls are independent (not knowing Alarm) F
* Burglary and RadioReport are independent given Earthquake  ?
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Independences in BBNs

@

\

Earthquake and Burglary are independent given MaryCalls F
Burglary and MaryCalls are independent (not knowing Alarm) F
Burglary and RadioReport are independent given Earthquake T
Burglary and RadioReport are independent given MaryCalls ?
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Independences in BBNs

@

\

Earthquake and Burglary are independent given MaryCalls F
Burglary and MaryCalls are independent (not knowing Alarm) F
Burglary and RadioReport are independent given Earthquake T
Burglary and RadioReport are independent given MaryCalls F
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Bayesian belief networks (BBNs)

Bayesian belief networks

* Represents the full joint distribution over the variables more
compactly using the product of local conditionals.

* So how did we get to local parameterizations?

P(X,,X,,..X )= |'| P(X, | pa(X)))

=1

* The decomposition is implied by the set of independences
encoded in the belief network.
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Full joint distribution in BBNs

B
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J
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Full joint distribution in BBNs

B
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J

=PJ=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
=P(J=T|A=T)PB=T,E=T,A=T,M =F)
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Full joint distribution in BBNs

B
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J

=PJ=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)

=PJ=T|A=T)PB=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)PB=T,E=T,A=T)
PM=F|A=T)PB=T,E=T,A=T)
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Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M =F)P(B=T,E=T,A=T,M =F)
=P(J=T|A=T)P(B=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
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Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M =F)P(B=T,E=T,A=T,M =F)
=P(J=T|A=T)PB=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
PB=T)AE=T)
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Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=PJ=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
=PJ=T|A=T)PB=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
PA=T|B=T,E=T)P(B=T,E=T)
| AB=DAE=T)
=PJ=T|A=T)AM =F|A=T)AA=T|B=T,E= T)P(B T)P(E 7
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Bayesian belief network.

* In the BBN the full joint distribution is expressed using a set
of local conditional distributions

P(B) P(E)
T F T F
Burglary Earthquake
0.001 0.999 0.002 0.998
P(A|B,E)
/ BE| T F

T T |0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

P(IA)

\ P(M|A)
Al T F Al T F
T 0.90 0.1 T|0.7 0.3
F| 0.05 0.95 F| 0.0l 0.99
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Parameter complexity problem

* In the BBN the full joint distribution is

P(X,.X,... X,) = []P(X, | pa(X)))
i=l,.n

 What did we save?

Cgarthquake

Parameters:
full joint: 2° =32

BBN: 2° +2(2°)+2(2) =20

Parameters to be defined:
full joint: 25 —1 =31

BBN: 27 +2(2)+2(1) =10
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Model acquisition problem

The structure of the BBN
* typically reflects causal relations
(BBNs are also sometime referred to as causal networks)

 Causal structure is intuitive in many applications domain and it
is relatively easy to define to the domain expert

Probability parameters of BBN

* are conditional distributions relating random variables and
their parents

» Complexity is much smaller than the full joint

* It is much easier to obtain such probabilities from the expert or
learn them automatically from data
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