CS 1571 Introduction to Al
Lecture 15

Partial order planning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al

Administration

* Problem sets:
— PS 1-5 graded and available for pick up
— PS solutions are on the web

* Midterms:
— at the end of the class

CS 1571 Intro to Al




Planning

Planning problem:
+ find a sequence of actions that lead to a goal

+ this requires to model and reason about effects of agent’s
actions on the real-world.

Planning problem:
— 1is a special type of a search problem
+ State space: states of the world.
+ Initial state: A world state we start from.
* Operators. Application of actions that change the state.
* Goal condition. Desired state of the world.

CS 1571 Intro to Al

Planning

Specifics of a planning problem:

» Complex description of world states

+ Large number of actions

» Every action effects only a “small” subset of relations in the state

» Goals are defined over a “small” set of relations

This causes:
« alarge branching factor of the search tree,
* long action sequences (solution length is large)

CS 1571 Intro to Al




Planning systems design.

Two planning systems designs:
 Situation calculus
— based on first-order logic,
— asituation variable models new states of the world

— use inference methods developed for FOL to do the
reasoning

« STRIPS —planners
— STRIPS — Stanford research institute problem solver
— Restricted language as compared to the situation calculus
— Allows for more efficient planning algorithms

CS 1571 Intro to Al

STRIPS representation.

* More restricted representation language as compared to the
situation calculus

e States:

— represent facts that are true at a specific point in time
conjunction of literals, e.g. On(4,B), On(B,Table), Clear(A)

* Actions (operators):
Operator: Move (x,),z)
— Preconditions: On(x,y), Clear(x), Clear(z)
— Effect lists:
* Add list: On(x,z), Clear(y)

* Delete list: On(x,y), Clear(z)
(Everything else is unaffected)

* Goals: conjunctions of literals, e.g. On(4,B), On(B,C),

CS 1571 Intro to Al




STRIPS representation. Benefits.

Benefits:
+ States, actions and goals have structure
* Action representation:

— Leads to more intuitive and compact description of actions
(no need to write many axioms !!!)

— Avoids the frame problem
* Restrictions lead to more efficient planning algorithms.

STRIPS planning:
+ find a sequence of operators from the initial state to the goal

» Search problem definition in STRIPS looks much like the
standard search problem definition

CS 1571 Intro to Al

STRIPS planning.

STRIPS planning problem:
* Find a sequence of actions that lead to a goal
 States and goals are defined by a conjunctions of literals
Two basic search methods:
* Forward search (goal progression)
— From the initial state try to reach the goal
* Backward search (goal regression)
— Start from the goal and try to project it to the initial state
More complex planning method:
* Partial-order planning (POP)
— Search the space of partially build plans

CS 1571 Intro to Al




Divide and conquer.

* Divide and conquer strategy:
— divide the problem to a set of smaller sub-problems,
— solve each sub-problem independently
— combine the results to form the

In planning we would like to satisfy a set of goals

* Divide and conquer in planning:
— Divide the planning goals along individual goals
— Solve (find a plan for) each of them independently
— Combine the plan solutions in the resulting plan

» s it always safe to use divide and conquer?
— No. There can be interacting goals.

CS 1571 Intro to Al

Sussman’s anomaly.
* An example from the blocks world in which divide and

conquer fails
* Interacting goals

PR

Initial state Goal

On(A4,B)
On(B,C)

CS 1571 Intro to Al




Sussman’s anomaly
1. Assume we want to satisfy On(A4,B) first
Al - B @
Initial state
But now we cannot satisfy On(B,C) without undoing On (4, B)

2. Assume we want to satisfy On(B,C) first.

|. — B
Al Bl

Initial state

But now we cannot satisfy On(4,B) without undoing On(B,C)

CS 1571 Intro to Al

State space vs. plan space

* An alternative to planning algorithms that search states
(configurations of world) is to search the space of plans

* Plan: Defines sequences of operators to be performed
* Partial plan:
— plan that is not complete
* Some plan steps are missing
— some orderings of operators are not finalized
* Only relative order is given
» Benefits of working with partial plans:

— We do not have to build the sequence from the initial state or
the goal

— We do not have to commit to a specific action sequence
— We can work on sub-goals individually (divide and conquer)

CS 1571 Intro to Al




State-space vs. plan-space search

State-space search

STRIPS
operator

State
(set of formulas)

Plan-space search /
Finish

Plan transformation
operators

Start

Incomplete
(partial) plan

CS 1571 Intro to Al

Plan transformation operators

Examples of : \

* Add an operator to a plan Move(A,x,B
start goal

so that it satisfies some open

. ove(C,A,D
condition ( >/I—>< )

* Add link (+ instantiate) Move(A,H,B
start goal

O ove(C,A,D

* Order (reorder) operators

Et)art ?Eove(c’y’D? Move(A,H,B% ggl

CS 1571 Intro to Al




Partial-order planners (POP)

* also called Non-linear planners
» Use STRIPS operators

Graphical representation of an operator Move(x,y,z)

add list

| Onixy) | | Clear) | | Clear) | preconditions

Delete list is not shown !!!

[lustration of POP on the Sussman’s anomaly case

CS 1571 Intro to Al

Partial order planning. Start and finish.

 Finish >

Goal

onCA)| [clearF)| [on@ar)| [ clear®)]| [on®F)| | Clearo)]
< Start__>

Start m

CS 1571 Intro to Al




Partial order planning. Start and finish.

C Finish

\ / Goal

Open conditions: conditions yet to be satisfied

onCA) [clearF)| [on@aF)| [ clear®)]| [on®F)| | Clearo)]

Start m

CS 1571 Intro to Al

Partial order planning. Add operator.

B

Goal

We want to satisfy an open
condition

Move(A,y,B

’ Clear(A)‘ ’ On(A,y)

’ Clear(B)‘ Always select an operator
that helps to satisfy one of the
open conditions

onCA)| [clearF)| [on@ar)| [ clear®)]| [on®F)| | Clearo)]
St

Start m

CS 1571 Intro to Al




Partial order planning. Add link.

B

Goal

On(A,B)
Move(A,y,B

| Clear(a) | On(ay)| | ClearB)|

onCA) [clearF)| [on@ar)| [ clear®)]| [on®F)| | Clearo)]
st

Start m

CS 1571 Intro to Al

Partial order planning. Add link.

Goal

On(A,B)
Move(A,y,B

[cleara)  [[onay)] [ clears) Add link
/ Satisfies an open condition

onCA)| [clearF)| [on@ary| [ clear®)]| [on®F)| | Clearo)]

< St

Start m

CS 1571 Intro to Al




Partial order planning. Add link.

Goal

Clear(F1
Move(A,FLB)

[ onaFl] | Clear(®)]

Satisfies an open condition

instantiates  y/FI

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.F | .
Ic
@ Start m

CS 1571 Intro to Al

Partial order planning. Add operator. I
C

Goal

Clear(F1
Move(A,FLB) Move(B,y,C

| on(AFl] | Clear(®)| | Clear®) | On(B.y)| | Clear(C) |

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.F | .
Ic
@ Start m

CS 1571 Intro to Al




Partial order planning. Add links. [4

Bl

Goal

Clear(F1 Clear(F1)
Move(A,FLB) Move(B,F1,C

| on(AFl] | Clear(B)| | Clear(®) | On(B.FI| | Clear(©)|

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.F | .
Ic
@ Start m

CS 1571 Intro to Al

Partial order planning. Interactions.

Clear(F1 Clear(F1)
Move(A,FLB) Move(B,F1,C

| on(AFl] | Clear(B)| | Clear®) | On(B.FI| | Clear(©)|

AN

Deletes Clear(B)
A was stacked on B

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.F | .
Ic
@ Start m

CS 1571 Intro to Al




Partial order planning. Order operators. I
C

On(A,B) Goal

Clear(F1

Move(B,FL,C)
comes before
Move(A,F1,B)

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.F | .
Ic
@ Start m

| on(AFl] | Clear(B)| | Clear(®) | On(B.FI| | Clear(©)|

CS 1571 Intro to Al

Partial order planning. Add operator |
B

Move(A,FL,BY*

| on(AFI] | Clear(B)| | Clear(®) | On(B.FI| | Clear(©)|

oo —
[On(u.A) | | Clear(u)| | Clear(v) |

On(C,A) ’Clear(Fl)‘ | Clear(©)| | on(AF)| | Clear(®)| [On(B, Fl)\

@ Start m

CS 1571 Intro to Al




Partial order planning. Add links.
B

Goal

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.F | o
Ic
@ Start m

CS 1571 Intro to Al

Partial order planning. Threats.
I

Goal

Clear(F1 Clear(F1)

Move(A,FL,BY* Move(B,F1,C
Clear(A) | on(AFl| | Clear(B)] | ﬁ? On(B,Fl) | Clear(C)
Clear(A) /

Move(C,AF Deletes Clear(C)

B moved on top of C

lonc.A)| [ Clear(©)| | Clear(FD)]

on(C,A) | Clear(F)| | Clear(©)| | On(AF)| | Clear(®)| [On(B.FD |

C
@ Start m

CS 1571 Intro to Al




Partial order planning. Order operators.
I

Goal
Clear(F1

Move(A,FLB) Move(B,F1,C

’ On(A,Fd ’ Clear(B)‘ | Clear(B)| On(Bﬂ Clear(C)

Chiove(C A

Clear(FI)

On(C,A)
On(C,A) ’Clear(Fl)‘ Clear(C) ’On(A,Fl)‘ ] Clear(B)\ ’On(B,Fl)‘ o
Ic
@ Start m

CS 1571 Intro to Al

POP planning. Directions.

B

Move(B,F1,C

| on(AFI] | Clear(B)| | Clear(®)| | On(B.FI] | Clear(C)
-

Chiove(C AL

On(C,A) Clear(FI)

Clear(C) | | On(AF)| | Clear(®)| [On(B.F) |

C

Start m

CS 1571 Intro to Al




Consistent POP plan.

Goal

Clear(F1)

Move(A,FLB) Move(B,F1,C

B,Fli Clear(C)

Clear(A) | on(AFI] | Clear(B)| | Clear(®) || On(

Chiove(C A

Clear(A)

On(C,A) Clear(FI)

Clear(©) | | On(AF)| | Clear(®)| [On(B.F) |

I
Start m

CS 1571 Intro to Al

Partial order planning. Result plan.

Plan: a topological sort
of a graph

Move(A,F1,B
Move(B,F1,C 7Y

CS 1571 Intro to Al




Partial order planning.

* Remember we search the space of partial plans

Finish " —
\

Incomplete
(partial) plan

Start

* POP: is sound and complete

CS 1571 Intro to Al

Hierarchical planners

Extension of STRIPS planners.
+ Example planner: ABSTRIPS.

Idea:

» Assign a criticality level to each conjunct in preconditions list
of the operator

* Planning process refines the plan gradually based on criticality
threshold, starting from the highest criticality value:

— Develop the plan ignoring preconditions of criticality less
than the criticality threshold value (assume that
preconditions for lower criticality levels are true)

— Lower the threshold value by one and repeat previous step

CS 1571 Intro to Al




Towers of Hanoi

=l — L=

Start position Goal position

Hierarchical planning
Assume:

the largest disk — criticality level 2
the medium disk — criticality level 1

the smallest disk — criticality level 0

CS 1571 Intro to Al

Hierarchical planning

Level 2 Level 1

Level 0

o E
333334:

CS 1571 Intro to Al




Planning with incomplete information

Some conditions relevant for planning can be:

— true, false or unknown

Example:

» Robot and the block is in Room 1
* Goal: get the block to Room 4
*  Problem: The door between Room1 and 4 can be closed

Room4 I

Room3

ME
..@

Rooml1

Room2

Room4 I Room3
Room1 Room2

CS 1571 Intro to Al

Planning with incomplete information

Initially we do not know whether the door is opened or closed:
* Different plans:

— If not closed: pick the block, go to room 4, drop the block

— If closed: pick the block, go to room2, then room3 then
room4 and drop the block

Room4 I

Room3

ME
..@

Rooml1

Room2

Room4 Room3
Room1 Room2

CS 1571 Intro to Al




Planning with incomplete information

Initially we do not know whether the door is opened or closed:
* Different plans:
— If not closed: pick the block, go to room 4, drop the block

— If closed: pick the block, open the door, go to room4, and
drop the block

Room4 I Room3 Room4 Room3

Y
& 8o

Rooml1 Room2 Room1 Room2

CS 1571 Intro to Al

Conditional planners

» Are capable to create conditional plans that cover all possible
situations (contingencies) — also called contingency planners

* Plan choices are applied when the missing information
becomes available

* Missing information can be sought actively through actions
— Sensing actions

Room4 I Room3 Room4 I Room3

8o §o

Room1 Room2 Room1 Room2

CS 1571 Intro to Al




Sensing actions

Example:
CheckDoor(d): checks the door d
Preconditions: Door(d,x,y) — one way door between x and y

& At(Robot,x)
Effect: (Closed(d) v 1Closed(d)) - one will become true

Room4 I Room3 Room4 I Room3

-
§ § o

Rooml1 Room2 Room1 Room2

CS 1571 Intro to Al

Conditional plans

Sensing actions and conditions incorporated within the plan:

F Go (R1,R4) Drop(B)

Pick(B) —  CheckDoor(D) ~* Closed I
door ? \
T * Go(RLR2)— Go (R2,R3) — Go(R3,R4)

Room4 I Room3 Room4 Room3

8o §o

Room1 Room2 Room1 Room2

CS 1571 Intro to Al




