CS 1571 Introduction to AI Lecture 13

Planning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 1571 Intro to AI

Administration

- PS-5 due today:
 - Report
 - No programming assignment
- No homework out
- Midterm:
 - Tuesday, October 15, 2002
 - In-class, closed book
 - Material covered till (including) Thursday, October 10

Planning

Propositional and first-order logic

- Give formalisms for representing the knowledge about the world and ways of reasoning
- Statements about the world are either **true** or **false**

The real-world:

- Is **dynamic**; i.e. it can change over time
 - Things that are true now may not be true in the future

Example: Age(John, 17) Age(John, 18)

• An intelligent **agent can actively change** the world through actions.

Example: action of painting car12 blue causes:

color(car12, white) becomes **false** and color(car12, blue) **true**Planning problem: find a sequence of actions that lead to a goal

CS 1571 Intro to AI

Planning

Planning problem:

- find a sequence of actions that lead to a goal
- is a special type of a search problem

Search problem:

- State space a set of states of the world among which we search for the solution.
- **Initial state**. A state we start from.
- Operators. Map states to new states.
- Goal condition. Test whether the goal is satisfied.

Challenges:

- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation

Planning search. Example.

- Assume a simple problem of buying things:
 - Get a quarter of milk, bananas, cordless drill

A huge branch factor !!! Goals can take multiple steps to reach!!!

CS 1571 Intro to AI

Planning

How to address the problems?

- Open state, action and goal representations to allow selection, reasoning. Make things visible and expose the structure.
 - Use FOL or its restricted subset to do the reasoning.
- Add actions to the plan sequence wherever and whenever it is needed
 - Drop the need to construct solutions sequentially from the initial state.
- Apply divide and conquer strategies to sub-goals if these are independent.

Challenges:

- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation

Planning systems design.

Two planning systems designs:

- Situation calculus
 - based on first-order logic,
 - a situation variable models new states of the world
 - use inference methods developed for FOL to do reasoning
- STRIPS like planners
 - STRIPS Stanford research institute problem solver
 - Restricted language as compared to the situation calculus
 - Allows for more efficient planning algorithms

CS 1571 Intro to AI

Situation calculus

- Logic for reasoning about changes in the state of the world
- The world is described by:
 - Sequences of situations of the current state
 - Changes from one situation to another are caused by actions
- The situation calculus allows us to:
 - Describe the initial state and goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB implies the goal state
 - and thereby allow us to extract a plan

Situation calculus

Language:

- Special variables: s,a objects of type situation and action
- Action functions that return actions.
 - E.g. Move(A, TABLE, B) represents a move action
 - -Move(x,y,z) represents an action schema
- Two special function symbols of type situation
 - $-s_0$ initial situation
 - -DO(a,s) denotes the situation obtained after performing an action a in situation s
- Situation-dependent functions and relations (also called fluents)
 - **Relation:** On(x,y,s) object x is on object y in situation s;
 - Function: Above(x,s) object that is above x in situation s.

CS 1571 Intro to AI

Situation calculus. Blocks world example. Α В Α В C Initial state Goal $On(A, Table, s_0)$ On(A,B,s) $On(B, Table, s_0)$ On(B,C,s) $On(C, Table, s_0)$ On(C, Table, s)Clear(A, s_0) Clear(B, s_0) $Clear(C, s_0)$ Clear(Table, s_0)

Blocks world example. В \mathbf{C} В Α C **Initial state** Goal $On(A, Table, s_0)$ On(A,B,s) $On(B, Table, s_0)$ On(B,C,s) $On(C, Table, s_0)$ On(C, Table, s) $Clear(A, s_0)$ **Note:** It is not necessary that Clear(B, s_0) the goal describes all relations $Clear(C, s_0)$ Clear(A, s)Clear(Table, s_0) CS 1571 Intro to AI

Knowledge about the world. Axioms.

Knowledge in the KB

• represents changes in the world due to actions.

Two types of axioms:

- Effect axioms
 - changes in situations that result from actions
- Frame axioms
 - things preserved from the previous situation

CS 1571 Intro to AI

Blocks world example. Effect axioms.

Effect axioms:

Moving x from y to z. MOVE(x, y, z)

Effect of move changes on **On** relations

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))$$

Effect of move changes on Clear relations

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table)$$

 $\rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))$

Blocks world example. Frame axioms.

- Frame axioms.
 - Represent things that remain unchanged after an action.

On relations:

$$On(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow On(u, v, DO(MOVE(x, y, z), s))$$

Clear relations:

$$Clear(u, s) \land (u \neq z) \rightarrow Clear(u, DO(MOVE(x, y, z), s))$$

CS 1571 Intro to AI

Planning in situation calculus.

Planning problem:

• find a sequence of actions that lead to a goal

Planning in situation calculus is converted to theorem proving.

Goal state:

$$\exists s \ On(A,B,s) \land On(B,C,s) \land On(C,Table,s)$$

- Possible inference approaches:
 - Inference rule approach
 - Conversion to SAT
- Plan (solution) is a byproduct of theorem proving.
- Example: blocks world

Planning in a blocks world.

A B C

A B C

Initial state

 $On(A, Table, s_0)$ $On(B, Table, s_0)$ $On(C, Table, s_0)$ $Clear(A, s_0)$

Clear(A, s_0) Clear(B, s_0) Clear(C, s_0) Clear(Table, s_0)

Goal

On(A,B, s) On(B,C, s)On(C,Table, s)

CS 1571 Intro to AI

Planning in the blocks world.

 $s_0 =$

 $On(A, Table, s_0)$ $Clear(A, s_0)$ $Clear(Table, s_0)$

 $On(B, Table, s_0)$ $Clear(B, s_0)$ $On(C, Table, s_0)$ $Clear(C, s_0)$

Action: MOVE(B, Table, C) $s_1 = DO(MOVE(B, Table, C), s_0)$

?

Planning in the blocks world.

$$\begin{array}{lll} s_0 = & & & & & & & & & \\ On(A, Table \,, s_0) & & Clear \, (A, s_0) & & Clear \, (Table \,, s_0) \\ On(B, Table \,, s_0) & & Clear \, (B, s_0) \\ On(C, Table \,, s_0) & & Clear \, (C, s_0) \end{array}$$

Action:
$$MOVE(B, Table, C)$$

 $s_1 = DO(MOVE(B, Table, C), s_0)$
 $On(A, Table, s_1)$
 $On(B, C, s_1)$
 $\neg On(B, Table, s_1)$
 $On(C, Table, s_1)$

Planning in the blocks world.

CS 1571 Intro to AI

Clear (Table, s_2)

Clear (A, s_2)

Planning in situation calculus.

Planning problem:

 $On(C, Table, s_2)$

find a sequence of actions that lead to a goal
 Planning in situation calculus is converted to theorem proving.

Goal state:

 $\exists s \ On(A,B,s) \land On(B,C,s) \land On(C,Table,s)$

- Possible inference approaches:
 - Inference rule approach
 - Conversion to SAT
- Plan (solution) is a byproduct of theorem proving.
- Problem:
 - Large search space.
 - Proof may not lead to the best plan.

Frame problem

Frame problem refers to:

• The need to represent a large number of frame axioms **Solution:** combine positive and negative effects in one rule

$$On(u, v, DO(MOVE(x, y, z), s)) \Leftrightarrow (\neg((u = x) \land (v = y)) \land On(u, v, s)) \lor \lor (((u = x) \land (v = z)) \land On(x, y, s) \land Clear(x, s) \land Clear(z, s))$$

Inferential frame problem:

We still need to derive properties that remain unchanged
 Other problems:

- Qualification problem enumeration of all possibilities under which an action holds
- Ramification problem enumeration of all inferences that follow from some facts