
1

CS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 12

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Logical reasoning systems

CS 1571 Intro to AI

Logical inference in FOL

Logical inference problem:
• Given a knowledge base KB (a set of sentences) and a

sentence , does the KB semantically entail ?

In other words: In all interpretations in which sentences in the
KB are true, is also true?

Logical inference problem in the first-order logic is
undecidable !!!. No procedure that can decide the entailment
for all possible input sentences in finite number of steps.

α=|KB ?

α

αα

2

CS 1571 Intro to AI

Resolution inference rule
• Recall: Resolution inference rule is sound and complete

(refutation-complete) for the propositional logic and CNF

• Generalized resolution rule is sound and complete (refutation-
complete) for the first-order logic and CNF (w/o equalities)

CB
CABA

∨
∨¬∨ ,

),(
,

111111

2121

njjkii

nk

SUBST ψψψψφφφφσ
ψψψφφφ

KKKK

KK

+−+− ∨∨∨∨∨∨∨∨
∨∨∨∨

failUNIFY ji ≠¬=),(ψφσ

Example:
)()(

)()(),()(
ySJohnP

ySJohnQxQxP
∨

∨¬∨

The rule can be also written in the implicative form (book)

CS 1571 Intro to AI

Inference with resolution rule

• Proof by refutation:
– Prove that is unsatisfiable
– resolution is refutation-complete

• Main procedure (steps):
1. Convert to CNF with ground terms and

universal variables only
2. Apply repeatedly the resolution rule while keeping track

and consistency of substitutions
3. Stop when empty set (contradiction) is derived or no more

new resolvents (conclusions) follow

α¬,KB

α¬,KB

3

CS 1571 Intro to AI

Dealing with equality

• Resolution works for first-order logic without equalities
• To incorporate equalities we need an additional inference rule
• Demodulation rule

• Example:

• Paramodulation rule: more powerful inference rule
• Resolution+paramodulation

– give refutation-complete proof theory for FOL

))},,(/),(({
,

2121

2121

k

k

tSUBSTtSUBSTSUBST
tt

φφφσσ
φφφ

∨∨∨
=∨∨

K

K

failtzUNIFY i ≠=),(1σ

)(
)()),((

aP
xxfafP =

iiz φinterma

CS 1571 Intro to AI

Sentences in Horn normal form
• Horn normal form (HNF) in the propositional logic

– a special type of clause with at most one positive literal

• A clause with one literal, e.g. A, is also called a fact
• A clause representing an implication (with a conjunction of

positive literals in antecedent and one positive literal in
consequent), is also called a rule

• Modus ponens:

– is the complete inference rule for KBs in the Horn normal
form. Not all KBs are convertible to HNF !!!

)()(DCABA ∨¬∨¬∧¬∨

))(()(DCAAB ⇒∧∧⇒Typically written as:

B
ABA ,⇒

4

CS 1571 Intro to AI

Horn normal form in FOL

First-order logic (FOL)
– adds variables and quantifiers, works with terms

Generalized modus ponens rule:

Generalized modus ponens:
• is complete for the KBs with sentences in Horn form;
• not all first-order logic sentences can be expressed in the Horn

form

),(
,',',' 2121

τσ
τφφφφφφ

SUBST
nn ⇒∧∧ KK

),()',(s.t.on substituti a ii SUBSTSUBSTi φσφσσ =∀=

CS 1571 Intro to AI

Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied.
Typical usage: If we want to infer all sentences entailed by the
existing KB.

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule
prove the premises of the rule. Continue recursively.
Typical usage: If we want to prove that the target (goal)
sentence is entailed by the existing KB.

Both procedures are complete for KBs in Horn form !!!

α

5

CS 1571 Intro to AI

Forward chaining example
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied

),(),(),(zxFasterzyFasteryxFaster ⇒∧

KB: R1:

R2:

R3:

Assume the KB with the following rules:
),()()(yxFasterySailboatxSteamboat ⇒∧

),()()(zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

Theorem:),(PondArrowTitanicFaster

F1:

F2:

F3:

?

CS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:
F3:)(PondArrowRowBoat

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

?

6

CS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

Rule R1 is satisfied:

CS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

),(PondArrowMistralFaster
Rule R2 is satisfied:
F5:

Rule R1 is satisfied:

7

CS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

),(PondArrowMistralFaster
Rule R2 is satisfied:
F5:
Rule R3 is satisfied:

),(PondArrowTitanicFasterF6:

Rule R1 is satisfied:

CS 1571 Intro to AI

Backward chaining example

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule
prove the antecedents (if part) of the rule repeat recursively.

),()()(yxFasterySailboatxSteamboat ⇒∧

),()()(zyFasterzRowBoatySailboat ⇒∧

),(),(),(zxFasterzyFasteryxFaster ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

KB:

Theorem:),(PondArrowTitanicFaster

R1:

R2:

R3:

F1:

F2:

F3:

8

CS 1571 Intro to AI

Backward chaining example

),(PondArrowTitanicFaster

)(TitanicSteamboat

R1

)(PondArrowSailboat

),()()(yxFasterySailboatxSteamboat ⇒∧

),(PondArrowTitanicFaster
}/,/{ PondArrowyTitanicx

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

CS 1571 Intro to AI

Backward chaining example

)(TitanicSteamboat
R1

),(PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat)(PondArrowSailboat

),(PondArrowTitanicFaster
}/,/{ PondArrowzTitanicy

),()()(zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

9

CS 1571 Intro to AI

Backward chaining example

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

CS 1571 Intro to AI

Backward chaining

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(MistralSailboat

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

y must be bound to
the same term

10

CS 1571 Intro to AI

Backward chaining
• The search tree: AND/OR tree
• Special search algorithms exits (including heuristics): AO, AO*

),(PondArrowyFaster
)(TitanicSteamboat

R1

)(PondArrowSailboat

),(PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat R1

)(MistralSailboat

R2
)(MistralSailboat

)(PondArrowRowBoat

CS 1571 Intro to AI

Knowledge-based system

• Knowledge base:
– A set of sentences that describe the world in some formal

(representational) language (e.g. first-order logic)
– Domain specific knowledge

• Inference engine:
– A set of procedures that work upon the representational

language and can infer new facts or answer KB queries
(e.g. resolution algorithm, forward chaining)

– Domain independent

Knowledge base

Inference engine

11

CS 1571 Intro to AI

Retrieval of KB information

• The reasoning algorithms operating upon the KB need to
access and manipulate information stored there
– Large KBs consist of thousands of sentences

• Problem: retrieval of sentences from the KB (e.g. for the
purpose of unification)
– Simple flat list of conjuncts can be very long and searching

it exhaustively is inefficient
• Solution: indexing

– Store and maintain the sentences in a table (hash table)
according to predicate symbols they include

CS 1571 Intro to AI

Table-based indexing of KBs
Assume the knowledge is expressed in the implicative form, with

sentences corresponding to facts and rules
• For each predicate we can store its:

– positive literals
– negative literals,
– rules in which it occurs in the premise,
– rules in which it occurs in the conclusion.

12

CS 1571 Intro to AI

Indexing and retrieval of KB information

Problem: the number of elements (clauses) with the same
predicate can be huge

Solution: tree-based indexing
• structure the KB further, create tables for different symbols

that occur in the predicate

CS 1571 Intro to AI

Indexing of information in KBs

Problem: matching of sentences with variables
• Too many entries need to be searched and this even if the

resulting set is small

• Partial solution: cross-indexing
• Create more special tables combining predicates and arguments

e.g. have a table for: Taxpayer+zip_code+num_dependents
• Choose and search the most promising table for retrieval
• No universal solution for all possible matchings, since all the

number of all tables would go up exponentially

Taxpayer(SSN, zipCode, net_income,dependents)Assume:
Taxpayer(x, 15260, y,5)We want to match e.g.:

13

CS 1571 Intro to AI

Automated reasoning systems

Examples and main differences:
• Theorem provers

– Prove sentences in the first-order logic
• Deductive retrieval systems

– Systems based on rules (KBs in Horn form)
– Prove theorems or infer new assertions (forward, backward

chaining)
• Production systems

– Systems based on rules with actions in antecedents
– Forward chaining mode of operation

• Semantic networks
– Graphical representation of the world, objects are nodes in

the graphs, relations are various links

CS 1571 Intro to AI

Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• rule base (includes rules)
• working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literal
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB
– QUERY the user, etc …

kn aaappp ,,, 2121 KK ⇒∧∧

14

CS 1571 Intro to AI

Production systems
• Use forward chaining to do reasoning:

– If the antecedent of the rule is satisfied (rule is said to be
“active”) then its consequent can be executed (it is “fired”)

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Strategy for selecting the rule to be fired from among possible
candidates is called conflict resolution

• Why do we care about the order?
– action of R27 can delete one of the preconditions of R105

and deactivate the R105
– Note: this is not a problem in Horn KB (no deletions)

R27

R105

Conditions R27

Conditions R105

Actions R27

Actions R105
?

CS 1571 Intro to AI

Production systems

• Problems with production systems:
– Additions and Deletions can change a set of active rules;
– If a rule contains variables testing all instances in which the

rule is active may require a large number of unifications.
– Conditions of many rules may overlap, thus requiring to

repeat the same unifications multiple times.
• Solution: Rete algorithm

– gives more efficient solution for managing a set of active
rules and performing unifications

– Implemented in the system OPS-5 (used to implement
XCON – an expert system for configuration of DEC
computers)

15

CS 1571 Intro to AI

Rete algorithm

• Assume a set of rules:

• And facts:

• Rete:
– Compiles the rules to a network that merges conditions of

multiple rules together (avoid repeats)
– Propagates valid unifications
– Reevaluates only changed conditions

)()()()(xDaddyCxBxA ⇒∧∧
)()()()(xEaddxDyBxA ⇒∧∧
)()()()(xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1(CBBBAA

CS 1571 Intro to AI

Rete algorithm. Network.

)()()()(xDaddyCxBxA ⇒∧∧
)()()()(xEaddxDyBxA ⇒∧∧
)()()()(xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1(CBBBAA

Rules:

Facts:

16

CS 1571 Intro to AI

Conflict resolution strategies

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Solutions:
– No duplication (do not execute the same rule twice)
– Recency. Rules referring to facts newly added to the

working memory take precedence
– Specificity. Rules that are more specific are preferred.
– Priority levels. Define priority of rules, actions based on

expert opinion. Have multiple priority levels such that the
higher priority rules fire first.

CS 1571 Intro to AI

Semantic network systems

• Knowledge about the world described in terms of graphs.
Nodes correspond to:
– Concepts or objects in the domain.

Links to relations. Three kinds:
– Subset links (isa, part-of links)
– Member links (instance links)
– Function links.

• Can be transformed to the first-order logic language
• Graphical representation is often easier to work with

– better overall view on individual concepts and relations

Inheritance relation links

17

CS 1571 Intro to AI

Semantic network. Example.

Ship

Ocean liner Oil tanker Engine Hull

Swimming
pool

Queen
Mary

Exxon
Valdez

Boiler

isa isa

member memberis-part is-part

is-part is-part

Queen Mary is a ship
Queen Mary has a boiler

Water
Transports on

Inferred properties:

