CS 1571 Introduction to AI Lecture 10

First-order logic

Milos Hauskrecht

 $\underline{milos@cs.pitt.edu}$

5329 Sennott Square

CS 1571 Intro to AI

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB \mid = \alpha$$
 ?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

KBs in the Horn form

Horn clause:

a special type of clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Can be written also as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

KB with statements in the Horn form:

- Two types of propositional statements:
 - Implications: called **rules** $(B \Rightarrow A)$
 - Propositional symbols: **facts** *B*

Modus ponens:

• is the "universal "(complete) rule for the KB with sentences in the Horn form

$$\frac{A \Rightarrow B, \quad A}{B}$$

$$\frac{A_1 \wedge A_2 \wedge \ldots \wedge A_k \Rightarrow B, A_1, A_2, \ldots A_k}{B}$$

CS 1571 Intro to AI

Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B* F3: *D*

Theorem: E

CS 1571 Intro to AI

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3· $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

Rule R2 is satisfied.

F5: *E*

CS 1571 Intro to AI

Backward chaining example

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

Backward chaining example

- KB: R1: $A \wedge B \Rightarrow C$
 - R2: $C \wedge D \Rightarrow E$
 - R3: $C \wedge F \Rightarrow G$
 - F1: A
 - F2: *B*
 - F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to AI

KB agents based on propositional logic

- Propositional logic allows us to build knowledge-based agents capable of answering queries about the world by infering new facts from the known ones
- Example: an agent for diagnosis of a bacterial disease
 - **Facts:** The stain of the organism is gram-positive

The growth conformation of the organism is chains

Rules: (If) The stain of the organism is gram-positive \land

The morphology of the organism is coccus \land

The growth conformation of the organism is chains

(Then) \Rightarrow The identity of the organism is streptococcus

Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:

• Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

CS 1571 Intro to AI

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- **Example:** Seniority of people domain

Assume we have: John is older than Mary

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow *John is older than Paul*

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary \land Mary is older than Paul \Rightarrow Jane is older than Paul

Problem: KB grows large

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary ∧ Mary is older than Paul

 \Rightarrow *John is older than Paul*

Jane is older than Mary \wedge Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: ??

CS 1571 Intro to AI

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- **Example:** Seniority of people domain

For inferences we need:

John is older than Mary ∧ Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

<u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u>

 \Rightarrow **PersA** is older than **PersC**

Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation \(\text{Mary likes vacation} \) \(\text{Ann likes vacation} \(\text{\chi} \)

• Solution: Allow quantification in statements

CS 1571 Intro to AI

First-order logic (FOL)

- More expressive than **propositional logic**
- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing quantification statements over objects without the need to represent each of them separately
- Predicate logic: first-order logic without the quantification fix

Logic

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- The valuation (meaning) function V
 - Assigns a truth value to a given sentence under some interpretation

```
V: sentence \times interpretation \rightarrow \{True, False\}
```

CS 1571 Intro to AI

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:

- Constant symbols:
 - E.g. John, France, car89
- Variables:
 - E.g. x,y,z
- Functions applied to one or more terms
 - E.g. father-of (John)father-of(father-of(John))

First order logic. Syntax.

Sentences in FOL:

- Atomic sentences:
 - **A predicate symbol** applied to 0 or more terms

Examples:

```
Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));
```

- t1 = t2 equivalence of terms

Example:

$$John = father-of(Peter)$$

CS 1571 Intro to AI

First order logic. Syntax.

Sentences in FOL:

- Complex sentences:
- Assume ϕ , ψ are sentences. Then:

$$- (\phi \land \psi) (\phi \lor \psi) (\phi \Rightarrow \psi) (\phi \Leftrightarrow \psi) \neg \psi$$
 and

$$- \quad \forall x \ \phi \qquad \exists y \ \phi$$
 are sentences

Symbols \exists , \forall

- stand for the existential and the universal quantifier

Semantics. Interpretation.

An interpretation I is defined by a **domain** and a **mapping**

 domain D: a set of objects in the world we represent; domain of discourse;

An interpretation I maps:

- Constant symbols to objects in D I(John) =
- Predicate symbols to relations, properties on D $I(brother) = \left\{ \left\langle \stackrel{\frown}{\mathcal{R}} \stackrel{\frown}{\mathcal{R}} \right\rangle; \left\langle \stackrel{\frown}{\mathcal{R}} \stackrel{\frown}{\mathcal{T}} \right\rangle; \dots \right\}$
- Function symbols to functional relations on D $I(father-of) = \left\{ \left\langle \stackrel{\frown}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\frown}{\mathcal{T}} ; \left\langle \stackrel{\frown}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\frown}{\mathcal{T}} ; \dots \right\}$

CS 1571 Intro to AI

Semantics of sentences.

Meaning (evaluation) function:

V: sentence \times interpretation \rightarrow {True, False}

A **predicate** *predicate*(*term-1*, *term-2*, *term-3*, *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, *term-3*, *term-n* are in the relation referred to by *predicate*

$$I(John) = \frac{?}{?} \qquad I(Paul) = \frac{?}{?}$$

$$I(brother) = \left\{ \left\langle \frac{?}{?} \frac{?}{?} \right\rangle; \left\langle \frac{?}{?} \frac{?}{?} \right\rangle; \dots \right\}$$

$$brother(John, Paul) = \left\langle \frac{?}{?} \frac{?}{?} \right\rangle \qquad \text{in } I(brother)$$

V(brother(John, Paul), I) = True

Semantics of sentences.

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- Boolean expressions: standard

E.g.
$$V(sentence-1 \ v \ sentence-2, I) = True$$

Iff $V(sentence-1,I) = True$ or $V(sentence-2,I) = True$

Ouantifications

$$V(\forall x \ \phi, I) = \textbf{True}$$
 substitution of x with d
Iff for all $d \in D$ $V(\phi, I[x/d]) = \textbf{True}$
 $V(\exists x \ \phi, I) = \textbf{True}$
Iff there is a $d \in D$, s.t. $V(\phi, I[x/d]) = \textbf{True}$

CS 1571 Intro to AI

Examples of sentences with quantifiers

• Universal quantification

All Upitt students are smart
$$\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$$

Typically the universal quantifier connects with implication

• Existential quantification

Someone at CMU is smart
$$\exists x \ at(x,CMU) \land smart(x)$$

Typically the existential quantifier connects with conjunction

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

CS 1571 Intro to AI

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

Everybody loves somebody

$$\exists y \forall x \ loves \ (x, y)$$

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x $\forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$ $\forall y, x \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

Everybody loves somebody
$$\exists y \forall x \ loves \ (x, y)$$
There is someone who is loved by everyone

CS 1571 Intro to AI

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes (x, IceCream)$

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream $\neg \exists \ x \neg likes \ (x, IceCream \)$

A universal quantifier in the sentence can be expressed using an existential quantifier!!!

Connections between quantifiers

Someone likes ice cream

```
\exists x \ likes \ (x, IceCream)
```

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

```
\neg \forall x \neg likes (x, IceCream)
```

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

CS 1571 Intro to AI

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John, Mary, Jane, ...

• **Properties:** gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• **Functions:** mother-of (one for each person x)

MotherOf(x)

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

• Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

• A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

• And so on