CS 1571 Introduction to AI Lecture 20

Bayesian belief networks

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Modeling uncertainty with probabilities

- Defining the **full joint distribution** makes it possible to represent and reason with uncertainty in a uniform way
- We are able to handle an arbitrary inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember $O(d^n)$ numbers.
 - n number of random variables, d number of values
- Inference (time) complexity. To compute some queries requires $O(d_n^n)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

A and B are conditionally independent given C

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$
$$P(A \mid C, B) = P(A \mid C)$$

Alarm system example

- Assume your house has an **alarm system** against **burglary**. You live in the seismically active area and the alarm system can get occasionally set off by an **earthquake**. You have two neighbors, **Mary** and **John**, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations

Bayesian belief network

1. Directed acyclic graph

- **Nodes** = random variables
 Burglary, Earthquake, Alarm, Mary calls and John calls
- **Links** = direct (causal) dependencies between variables. The chance of Alarm is influenced by Earthquake, The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions

relate variables and their parents

Bayesian belief network

Bayesian belief networks (general)

Two components: $B = (S, \Theta_S)$

- Directed acyclic graph
 - Nodes correspond to random variables
 - (Missing) links encode independences

Parameters

Local conditional probability distributions
 for every variable-parent configuration

$$\mathbf{P}(X_i \mid pa(X_i))$$

Where:

 $pa(X_i)$ - stand for parents of X_i

P(A|B,E)

В	Е	T	F
Т	Т	0.95	0.05
Τ	F	0.94	0.06
F	Τ	0.29	0.71
F	F	0.001	0.999

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables

$$B = T, E = T, A = T, J = T, M = F$$

Then its probability is:

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$P(B = T)P(E = T)P(A = T | B = T, E = T)P(J = T | A = T)P(M = F | A = T)$$

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterization?

Answer:

- Chain rule +
- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent P(A,B) = P(A)P(B)
- A and B are conditionally independent given C $P(A \mid C, B) = P(A \mid C) \qquad P(A, B \mid C) = P(A \mid C)P(B \mid C)$
- The graph structure implies the decomposition !!!

3 basic independence structures:

1. JohnCalls is independent of Burglary given Alarm

$$P(J \mid A, B) = P(J \mid A)$$

$$P(J, B \mid A) = P(J \mid A)P(B \mid A)$$

2. Burglary **is independent** of Earthquake (not knowing Alarm) Burglary and Earthquake **become dependent** given Alarm!!

$$P(B, E) = P(B)P(E)$$

3. MaryCalls is independent of JohnCalls given Alarm

$$P(J \mid A, M) = P(J \mid A)$$

$$P(J,M \mid A) = P(J \mid A)P(M \mid A)$$

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation

D-separation and independence

- Let X,Y and Z be three sets of nodes
- If X and Y are d-separated by Z, then X and Y are conditionally independent given Z

• **D-separation**:

 A is d-separated from B given C if every undirected path between them is blocked with C

Path blocking

- 3 cases that expand on three basic independence structures

A is d-separated from B given C if every undirected path between them is **blocked**

A is d-separated from B given C if every undirected path between them is **blocked**

A is d-separated from B given C if every undirected path between them is **blocked**

• 1. Path blocking with a linear substructure

A is d-separated from B given C if every undirected path between them is **blocked**

• 2. Path blocking with the wedge substructure

A is d-separated from B given C if every undirected path between them is **blocked**

• 3. Path blocking with the vee substructure

Earthquake and Burglary are independent given MaryCalls

?

- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm) ?

- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm)
- Burglary and RadioReport are independent given Earthquake

- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls

- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm) **F**
- Burglary and RadioReport are independent given Earthquake
- Burglary and RadioReport are independent given MaryCalls

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- So how did we get to local parameterizations?

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,...n} \mathbf{P}(X_i \mid pa(X_i))$$

• The decomposition is implied by the set of independences encoded in the belief network.

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(A = T | B = T, E = T)P(B = T, E = T)$$

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F | A = T)P(B = T, E = T, A = T)$$

$$P(A = T | B = T, E = T)P(B = T, E = T)$$

$$P(B=T)P(E=T)$$

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(A = T | B = T, E = T)P(B = T, E = T)$$

$$P(B=T)P(E=T)$$

$$= P(J = T \mid A = T)P(M = F \mid A = T)P(A = T \mid B = T, E = T)P(B = T)P(E = T)$$

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1...n} \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1...n} \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

of parameters of the BBN: ?

Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions

Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,...n} \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

$$2^2 + 2(2) + 2(1) = 10$$

Model acquisition problem

The structure of the BBN

- typically reflects causal relations
 (BBNs are also sometime referred to as causal networks)
- Causal structure is intuitive in many applications domain and it is relatively easy to define to the domain expert

Probability parameters of BBN

- are conditional distributions relating random variables and their parents
- Complexity is much smaller than the full joint
- It is much easier to obtain such probabilities from the expert or learn them automatically from data

BBNs built in practice

In various areas:

- Intelligent user interfaces (Microsoft)
- Troubleshooting, diagnosis of a technical device
- Medical diagnosis:
 - Pathfinder (Intellipath)
 - CPSC
 - Munin
 - QMR-DT
- Collaborative filtering
- Military applications
- Business and finance
 - Insurance, credit applications

Diagnosis of car engine

• Diagnose the engine start problem

Car insurance example

• Predict claim costs (medical, liability) based on application data

(ICU) Alarm network

CPCS

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (University of Pittsburgh)
- 422 nodes and 867 arcs

QMR-DT

- Medical diagnosis in internal medicine
- Based on QMR system built at U Pittsburgh

Bipartite network of disease/findings relations

