CS 1571 Introduction to AI Lecture 19

Uncertainty

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.

Problem description:

- **Disease:** pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count,
 Chest pain, etc.

Representation of a patient case:

• Statements that hold (are true) for the patient.

E.g: Fever =
$$True$$
Cough = $False$
WBCcount= $High$

Diagnostic task: we want to decide whether the patient suffers from the pneumonia or not given the symptoms

Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis

Problem: disease/symptoms relations are not deterministic

 They are uncertain (or stochastic) and vary from patient to patient

Uncertainty

Two types of uncertainty:

- Disease Symptoms uncertainty
 - A patient suffering from pneumonia may not have fever all the times, may or may not have a cough, white blood cell test can be in a normal range.
- Symptoms Disease uncertainty
 - High fever is typical for many diseases (e.g. bacterial diseases) and does not point specifically to pneumonia
 - Fever, cough, paleness, high WBC count combined do not always point to pneumonia

Uncertainty

Why are relations uncertain?

- Observability
 - It is impossible to observe all relevant components of the world
 - Observable components behave stochastically even if the underlying world is deterministic
- Efficiency, capacity limits
 - It is often impossible to enumerate and model all components of the world and their relations
 - abstractions can make the relations stochastic

Humans can reason with uncertainty !!!

– Can computer systems do the same?

Modeling the uncertainty.

Key challenges:

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
 - Humans can reason with uncertainty.

Methods for representing uncertainty

Extensions of the propositional and first-order logic

Use, uncertain, imprecise statements (relations)

Example: Propositional logic with certainty factors

Very popular in 70-80s in knowledge-based systems (MYCIN)

• Facts (propositional statements) are assigned a certainty value reflecting the belief in that the statement is satisfied:

$$CF(Pneumonia = True) = 0.7$$

• Knowledge: typically in terms of modular rules

If
1. The patient has cough, and
2. The patient has a high WBC count, and
3. The patient has fever

Then with certainty 0.7
the patient has pneumonia

Certainty factors

Problem 1:

• Chaining of multiple inference rules (propagation of uncertainty)

Solution:

Rules incorporate tests on the certainty values

$$(A \text{ in } [0.5,1]) \land (B \text{ in } [0.7,1]) \rightarrow C \text{ with } CF = 0.8$$

Problem 2:

Combinations of rules with the same conclusion

$$(A \text{ in } [0.5,1]) \land (B \text{ in } [0.7,1]) \rightarrow C \text{ with } CF = 0.8$$

$$(E \text{ in } [0.8,1]) \land (D \text{ in } [0.9,1]) \rightarrow C \text{ with } CF = 0.9$$

• What is the resulting CF(C)?

Certainty factors

Combination of multiple rules

$$(A \text{ in } [0.5,1]) \land (B \text{ in } [0.7,1]) \rightarrow C \text{ with } CF = 0.8$$

 $(E \text{ in } [0.8,1]) \land (D \text{ in } [0.9,1]) \rightarrow C \text{ with } CF = 0.9$

Three possible solutions

$$CF(C) = \max[0.9;0.8] = 0.9$$

 $CF(C) = 0.9*0.8 = 0.72$
 $CF(C) = 0.9+0.8-0.9*0.8 = 0.98$

Problems:

- Which solution to choose?
- All three methods break down after a sequence of inference rules

Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

Facts (propositional statements)

• Are represented via **random variables** with two or more values

Example: *Pneumonia* is a random variable

values: True and False

• Each value can be achieved with some probability:

$$P(Pneumonia = True) = 0.001$$

$$P(WBCcount = high) = 0.005$$

Probability theory

 Well-defined theory for representing and manipulating statements with uncertainty

Axioms of probability:

For any two propositions A, B.

1.
$$0 \le P(A) \le 1$$

2.
$$P(True) = 1$$
 and $P(False) = 0$

3.
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

True

Methods for representing uncertainty

Probabilistic extension of propositional logic

- **Propositions:**
 - statements about the world
 - Statements are represented by the assignment of values to random variables
- Random variables:
- Boolean Pneumonia is either True, False
 - Random variable Values
- ! Multi-valued Pain is one of {Nopain, Mild, Moderate, Severe} Random variable Values
 - Continuous
 HeartRate is a value in <0;180 >
 Random variable
 Values

Probabilities

Unconditional probabilities (prior probabilities)

$$P(Pneumonia) = 0.001$$
 or $P(Pneumonia = True) = 0.001$
 $P(Pneumonia = False) = 0.999$
 $P(WBCcount = high) = 0.005$

Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive

$$P(Pneumonia = True) = 0.001$$

 $P(Pneumonia = False) = 0.999$

Pneumonia	P (Pneumonia)
True	0.001
False	0.999

Probability distribution

Defines probability for all possible value assignments

Example 1:

$$P(Pneumonia = True) = 0.001$$

 $P(Pneumonia = False) = 0.999$

Pneumonia	P (Pneumonia)
True	0.001
False	0.999

Example 2:

$$P(WBCcount = high) = 0.005$$

 $P(WBCcount = normal) = 0.993$
 $P(WBCcount = high) = 0.002$

WBCcount	P (WBCcount)
high	0.005
normal	0.993
low	0.002

Joint probability distribution

Joint probability distribution (for a set variables)

 Defines probabilities for all possible assignments of values to variables in the set

Example: variables *Pneumonia* and *WBCcount*

P(pneumonia, WBCcount)

Is represented by 2×3 array(matrix)

WBCcount

Pneumonia

	high	normal	low
True	0.0008	0.0001	0.0001
False	0.0042	0.9929	0.0019

Joint probability distribution

Joint probability distribution (for a set variables)

 Defines probabilities for all possible assignments of values to variables in the set

Example 2: Assume variables:

Pneumonia (2 values)

WBCcount (3 values)

Pain (4 values)

 $\mathbf{P}(pneumonia, WBCcount, Pain)$ is represented by $2 \times 3 \times 4$ array

Example of an entry in the array

P(pneumonia = T, WBCcount = high, Pain = severe)

Joint probabilities: marginalization

Marginalization

- reduces the dimension of the joint distribution
- Sums variables out

P(WBCcount)

P(pneumonia, WBCcount) 2×3 matrix

			WBCcoun	t	P (Pneumonia)
		high	normal	low	
Pneumonia	True	0.0008	0.0001	0.0001	0.001
Тисинони	False	0.0042	0.9929	0.0019	0.999
		0.005	0.993	0.002	

Marginalization (here summing of columns or rows)

Marginalization

Marginalization

reduces the dimension of the joint distribution

$$P(X_1, X_2, \dots X_{n-1}) = \sum_{\{X_n\}} P(X_1, X_2, \dots X_{n-1}, X_n)$$

• We can continue doing this

$$P(X_1, \dots X_{n-2}) = \sum_{\{X_{n-1}, X_n\}} P(X_1, X_2, \dots X_{n-1}, X_n)$$

What is the maximal joint probability distribution?

Full joint probability

Full joint distribution

- the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

- Variables: Pneumonia, Fever, Paleness, WBCcount, Cough
- Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)
 - defines the probability for all possible assignments of values to these variables

```
P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = T)
```

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = F)

$$P(Pneumonia = T, WBCcount = High, Fever = T, Cough = F, Paleness = T)$$

... etc

How many probabilities are there?

Full joint distribution

- the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)

defines the probability for all possible assignments of values to these variables

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = T)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = F)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = F, Paleness = T)

... etc

- How many probabilities are there?
- Exponential in the number of variables

Full joint distribution

Any joint probability over a subset of variables can be obtained via marginalization

$$P(Pneumonia, WBCcount, Fever) =$$

$$\sum_{c,p=\{T,F\}} P(Pneumonia, WBCcount, Fever, Cough = c, Paleness = p)$$

• Is it possible to recover the full joint from the joint probabilities over a subset of variables?

Joint probabilities

• Is it possible to recover the full joint from the joint probabilities over a subset of variables?

P(WBCcount)

Joint probabilities and independence

- Is it possible to recover the full joint from the joint probabilities over a subset of variables?
- Only if the variables are independent !!!

 P(pneumonia, WBCcount)
 2×3 matrix

 WBCcount
 P(Pneumonia)

 Pneumonia
 high normal low

 Pneumonia
 ?
 ?

 False
 ?
 ?

 0.005
 0.993
 0.002

P(WBCcount)

Variable independence

- The two events A, B are said to be independent if:
 - P(A, B) = P(A)P(B)
- The variables X, Y are said to be independent if their joint can be expressed as a product of marginals:

$$\mathbf{P}(\mathbf{X}, \mathbf{Y}) = \mathbf{P}(\mathbf{X})\mathbf{P}(\mathbf{Y})$$

Conditional probability distribution

$$P(A | B) = ?$$

Conditional probability distribution

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

• **Product rule.** Join probability can be expressed in terms of conditional probabilities

$$P(A,B) = P(A \mid B)P(B)$$

Conditional probability distribution

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

• **Product rule.** Join probability can be expressed in terms of conditional probabilities

$$P(A,B) = P(A \mid B)P(B)$$

 Chain rule. Any joint probability can be expressed as a product of conditionals

$$\begin{split} P(X_1, X_2, \dots X_n) &= P(X_n \mid X_{1,} \dots X_{n-1}) P(X_{1,} \dots X_{n-1}) \\ &= P(X_n \mid X_{1,} \dots X_{n-1}) P(X_{n-1} \mid X_{1,} \dots X_{n-2}) P(X_{1,} \dots X_{n-2}) \\ &= \prod_{i=1}^n P(X_i \mid X_{1,} \dots X_{i-1}) \end{split}$$

Conditional probability

• Is defined in terms of the joint probability:

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

Example:

$$P(pneumonia = true | WBCcount = high) =$$

$$\frac{P(pneumonia = true, WBCcount = high)}{P(WBCcount = high)}$$

$$P(pneumonia = false | WBCcount = high) =$$

$$\frac{P(pneumonia = false, WBCcount = high)}{P(WBCcount = high)}$$

Conditional probability distribution

• Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

$$P(Pneumonia = true | WBCcount = high)$$

P(*Pneumonia*| *WBCcount*)

3 element vector of 2 elements

Pneumonia

		True	False	
WBCcount	high	0.08	0.92	1.0
1	normal	0.0001	0.9999	1.0
	low	0.0001	0.9999	1.0

Variable we condition on

P(Pneumonia = true | WBCcount = high)

+ P(Pneumonia = false | WBCcount = high)

Bayes rule

Conditional probability.

$$P(A \mid B) = P(B \mid A)P(A)$$

$$P(A,B) = P(B \mid A)P(A)$$

Bayes rule:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

When is it useful?

 When we are interested in computing the diagnostic query from the causal probability

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- Reason: It is often easier to assess causal probability
 - E.g. Probability of pneumonia causing fever
 vs. probability of pneumonia given fever

Bayes Rule in a simple diagnostic inference

- **Device** (equipment) operating *normally* or *malfunctioning*.
 - Operation of the device sensed indirectly via a sensor
- **Sensor reading** is either *High* or *Low*

P(Device status)

normal	malfunctioning
0.9	0.1

P(Sensor reading| Device status)

Status\Sensor	High	Low
normal	0.1	0.9
malfunc	0.6	0.4

Bayes Rule in a simple diagnostic inference.

• Diagnostic inference: compute the probability of device operating normally or malfunctioning given a sensor reading

P(Device status | Sensor reading = high) = ?

$$= \begin{pmatrix} P(\text{Device status} = normal \mid \text{Sensor reading} = high) \\ P(\text{Device status} = malfunctioning} \mid \text{Sensor reading} = high) \end{pmatrix}$$

- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate
- Solution: apply Bayes rule to reverse the conditioning variables

Bayes Rule in a simple diagnostic inference

- **Device** (equipment) operating *normally* or *malfunctioning*.
 - Operation of the device sensed indirectly via a sensor
- **Sensor reading** is either *High* or *Low*

P(Device status)

normal	malfunctioning
0.9	0.1

P(Sensor reading| Device status)

Status\Sensor	High	Low
normal	0.1	0.9
malfunc	0.6	0.4

P(Device status | Sensor reading = high) = ?

Bayes rule

Assume a variable A with multiple values $a_1, a_2, ... a_k$ Bayes rule can be rewritten as:

$$P(A = a_j | B = b) = \frac{P(B = b | A = a_j)P(A = a_j)}{P(B = b)}$$

$$= \frac{P(B = b | A = a_j)P(A = a_j)}{\sum_{i=1}^{k} P(B = b | A = a_j)P(A = a_j)}$$

Used in practice when we want to compute:

$$\mathbf{P}(A \mid B = b)$$
 for all values of $a_1, a_2, \dots a_k$

Probabilistic inference

Various inference tasks:

• Diagnostic task. (from effect to cause)

$$\mathbf{P}(Pneumonia | Fever = T)$$

• Prediction task. (from cause to effect)

$$\mathbf{P}(Fever | Pneumonia = T)$$

Other probabilistic queries (queries on joint distributions).

Inference

Any query can be computed from the full joint distribution !!!

Joint over a subset of variables is obtained through marginalization

$$P(A = a, C = c) = \sum_{i} \sum_{j} P(A = a, B = b_i, C = c, D = d_j)$$

• Conditional probability over set of variables, given other variables' values is obtained through marginalization and definition of conditionals

$$P(D = d \mid A = a, C = c) = \frac{P(A = a, C = c, D = d)}{P(A = a, C = c)}$$

$$= \frac{\sum_{i} P(A = a, B = b_{i}, C = c, D = d)}{\sum_{i} \sum_{j} P(A = a, B = b_{i}, C = c, D = d_{j})}$$

Inference

Any query can be computed from the full joint distribution !!!

 Any joint probability can be expressed as a product of conditionals via the chain rule.

$$\begin{split} P(X_1, X_2, \dots X_n) &= P(X_n \mid X_{1,} \dots X_{n-1}) P(X_{1,} \dots X_{n-1}) \\ &= P(X_n \mid X_{1,} \dots X_{n-1}) P(X_{n-1} \mid X_{1,} \dots X_{n-2}) P(X_{1,} \dots X_{n-2}) \\ &= \prod_{i=1}^n P(X_i \mid X_{1,} \dots X_{i-1}) \end{split}$$

• Sometimes it is easier to define the distribution in terms of conditional probabilities:

- E.g.
$$\mathbf{P}(Fever | Pneumonia = T)$$

 $\mathbf{P}(Fever | Pneumonia = F)$

Modeling uncertainty with probabilities

- Defining the **full joint distribution** makes it possible to represent and reason with uncertainty in a uniform way
- We are able to handle an arbitrary inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember $O(d^n)$ numbers.
 - n number of random variables, d number of values
- Inference (time) complexity. To compute some queries requires $O(d_{\cdot}^n)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

Medical diagnosis example

• Space complexity.

- Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
 WBCcount (3: high, normal, low), paleness (2: T,F)
- Number of assignments: 2*2*2*3*2=48
- We need to define at least 47 probabilities.

• Time complexity.

Assume we need to compute the marginal of Pneumonia=T from the full joint

$$P(Pneumonia = T) =$$

$$= \sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, n, l} \sum_{u \in T, F} P(Fever = i, Cough = j, WBCcount = k, Pale = u)$$

- Sum over: 2*2*3*2=24 combinations

Modeling uncertainty with probabilities

- Knowledge based system era (70s early 80's)
 - Extensional non-probabilistic models
 - Solve the space, time and acquisition bottlenecks in probability-based models
 - froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general
- Graphical model (late 80s, beginning of 90s)
 - Bayesian belief networks
 - Give solutions to the space, acquisition bottlenecks
 - Partial solutions for time complexities

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

A and B are conditionally independent given C

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$
$$P(A \mid C, B) = P(A \mid C)$$