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KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.

Problem description:

• Disease: pneumonia

• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

Representation of a patient case: 

• Statements that hold (are true) for the patient.

E.g:

Diagnostic task: we want to decide whether the patient suffers 

from the pneumonia or not given the symptoms

Fever =True

Cough =False

WBCcount=High
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Uncertainty

To make diagnostic inference possible we need to represent 
knowledge (axioms) that relate symptoms and diagnosis 

Problem: disease/symptoms relations are not deterministic

– They are uncertain (or stochastic) and vary from patient 
to patient

Pneumonia

CoughFeverPaleness WBC count
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Uncertainty

Two types of uncertainty:

• Disease           Symptoms uncertainty

– A patient suffering from pneumonia may not have fever all 

the times, may or may not have a cough, white blood cell 

test can be in a normal range.

• Symptoms          Disease uncertainty

– High fever is typical for many diseases (e.g. bacterial 

diseases) and does not point specifically to pneumonia

– Fever, cough, paleness, high WBC count combined do not 

always point to pneumonia
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Uncertainty

Why are relations uncertain? 

• Observability

– It is impossible to observe all relevant components of the 

world

– Observable components behave stochastically even if the 

underlying world is deterministic

• Efficiency, capacity limits

– It is often impossible to enumerate and model all 

components of the world and their relations

– abstractions can make the relations stochastic   

Humans can reason with uncertainty !!!

– Can computer systems do the same?  
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Modeling the uncertainty.

Key challenges:

• How to represent the relations in the presence of uncertainty? 

• How to manipulate such knowledge to make inferences?

– Humans can reason with uncertainty. 

Pneumonia

CoughFeverPaleness WBC count

?
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Methods for representing uncertainty

Extensions of the propositional and first-order logic

– Use, uncertain, imprecise statements (relations)

Example: Propositional logic with certainty factors

Very popular in 70-80s in knowledge-based systems (MYCIN)

• Facts (propositional statements) are assigned  a certainty 

value reflecting the belief in that the statement is satisfied:

• Knowledge: typically in terms of  modular rules

1. The patient has cough, and

2. The patient has a high WBC count, and

3. The patient has fever

with certainty 0.7

the patient has pneumonia

If

Then

7.0)( TruePneumoniaCF
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Certainty factors

Problem 1: 

• Chaining of multiple inference rules (propagation of uncertainty)

Solution:

• Rules incorporate tests on the certainty values

Problem 2:

• Combinations of rules with the same conclusion

• What is the resulting CF(C ) ?

0.8CF  with  ])1,7.0[in     (])1,5.0[in     (  CBA

0.8CF  with  ])1,7.0[in     (])1,5.0[in     (  CBA

0.9CF  with  ])1,9.0[in     (])1,8.0[in     (  CDE
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Certainty factors

• Combination of multiple rules

• Three possible solutions

Problems:

• Which solution  to choose?

• All three methods break down after a sequence of inference rules

0.8CF  with  ])1,7.0[in     (])1,5.0[in     (  CBA

0.9CF  with  ])1,9.0[in     (])1,8.0[in     (  CDE

9.0]8.0;9.0max[)( CCF

72.08.0*9.0)( CCF

98.08.0*9.08.09.0)( CCF

?
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Methods for representing uncertainty

Probability theory 

• A well defined theory for modeling and reasoning in the 

presence of uncertainty

• A natural choice to replace certainty factors 

Facts (propositional statements)

• Are represented via random variables with two or more values

Example:                      is a random variable

values: True and False

• Each value can be achieved with some probability:

001.0)( TruePneumoniaP

005.0)(  highWBCcountP

Pneumonia
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Probability theory

• Well-defined theory for representing and manipulating 

statements with uncertainty

Axioms of probability:

For any two propositions A, B.

1.

2.

3.

1)(0  AP

0)(  and   1)(  FalsePTrueP

)()()()( BAPBPAPBAP 
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Methods for representing uncertainty

Probabilistic extension of propositional logic

• Propositions:

– statements about the world

– Statements are represented by the assignment of values to 

random variables

• Random variables:

– Boolean 

– Multi-valued

– Continuous

FalseTruePneumonia ,either   is   

},,,{   of one is  SevereModerateMildNopainPain

Random variable Values

Random variable Values

 180 ; 0in     valuea  is  HeartRate 
Random variable Values

!

!
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Probabilities

Unconditional probabilities (prior probabilities)

Probability distribution

• Defines probabilities for all possible value assignments to a 

random variable

• Values are mutually exclusive

001.0)( TruePneumoniaP001.0)( PneumoniaP

005.0)(  highWBCcountP

or

001.0)( TruePneumoniaP

999.0)(  FalsePneumoniaP

)(PneumoniaPPneumonia

True
False

001.0
999.0

999.0)(  FalsePneumoniaP
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Probability distribution

Defines probability for all possible value assignments

001.0)( TruePneumoniaP

999.0)(  FalsePneumoniaP

1)()(  FalsePneumoniaPTruePneumoniaP

)(PneumoniaPPneumonia

True
False

001.0
999.0

005.0)(  highWBCcountP )(WBCcountPWBCcount

high
normal

005.0
993.0

993.0)(  normalWBCcountP

002.0)(  highWBCcountP low 002.0

Probabilities sum to 1 !!!

Example 1:

Example 2:
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Joint probability distribution

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments of values to 

variables in the set

Example: variables Pneumonia and WBCcount

high normal low

Pneumonia
True

False

WBCcount

0008.0

0042.0

0001.0

9929.0

0001.0

0019.0

),( WBCcountpneumoniaP

matrix)(array32Is represented by 
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Joint probability distribution

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments of values to 

variables in the set

Example 2: Assume variables:

Pneumonia (2 values)

WBCcount  (3 values)

Pain (4 values)

),,( severePainhighWBCcountTpneumoniaP 

array432 is represented by ),,( PainWBCcountpneumoniaP

Example of an entry in the array
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Joint probabilities: marginalization

Marginalization

• reduces the dimension of the joint distribution

• Sums variables out 

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount

0008.0

0042.0

0001.0

9929.0

0001.0

0019.0

)(PneumoniaP

001.0
999.0

Marginalization (here summing of columns or rows)

matrix32
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Marginalization

Marginalization

• reduces the dimension of the joint distribution

• We can continue doing this

What is the maximal joint probability distribution? 

• Full joint probability

  
}{

121121 ),,,(),,(
nX

nnn XXXXPXXXP 




 
},{

12121

1

),,,(),(
nn XX

nnn XXXXPXXP 
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Full joint distribution

• the joint distribution for all variables in the problem

– It defines the complete probability model for the problem

Example: pneumonia diagnosis

• Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

• Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)

– defines the probability for all possible assignments of values to these 

variables

• How many probabilities are there?

 ),,,,( FPalenessTCoughTFeverHighWBCcountTPneumoniaP 

 ),,,,( TPalenessFCoughTFeverHighWBCcountTPneumoniaP 

  etc

 ),,,,( TPalenessTCoughTFeverHighWBCcountTPneumoniaP 
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Full joint distribution

• the joint distribution for all variables in the problem

– It defines the complete probability model for the problem

Example: pneumonia diagnosis

Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)

– defines the probability for all possible assignments of values to these 

variables

• How many probabilities are there?

• Exponential in the number of variables

 ),,,,( FPalenessTCoughTFeverHighWBCcountTPneumoniaP 

 ),,,,( TPalenessFCoughTFeverHighWBCcountTPneumoniaP 

  etc

 ),,,,( TPalenessTCoughTFeverHighWBCcountTPneumoniaP 
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Full joint distribution

• Any joint probability over a subset of variables can be 

obtained via marginalization

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?








},{,

),,,,(

 ),,(

FTpc

pPalenesscCoughFeverWBCcountPneumoniaP

FeverWBCcountPneumoniaP



M. HauskrechtCS 1571 Intro to AI

Joint probabilities

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?

??
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Joint probabilities and independence

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

• Only if the variables are independent !!!

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?

??
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Variable independence

• The two events A, B  are said to be independent if: 

P(A, B) = P(A)P(B)

• The variables X, Y are said to be independent if their joint 

can be expressed as a product of marginals:

P(X, Y) = P(X)P(Y)
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Conditional probabilities

• Conditional probability distribution 

?)|( BAP
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Conditional probabilities

• Conditional probability distribution 

• Product rule. Join probability can be expressed in terms of 

conditional probabilities

0)(  s.t.  
)(

),(
)|(  BP

BP

BAP
BAP

)()|(),( BPBAPBAP 
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Conditional probabilities

• Conditional probability distribution 

• Product rule. Join probability can be expressed in terms of 

conditional probabilities

• Chain rule. Any joint probability can be expressed as a 

product of conditionals

)()|(),,( 1,11,121  nnnn XXPXXXPXXXP 

0)(  s.t.  
)(

),(
)|(  BP

BP

BAP
BAP

)()|(),( BPBAPBAP 

)()|()|( 2,12,111,1  nnnnn XXPXXXPXXXP 

  
n

i ii XXXP
1 1,1 )|( 
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Conditional probabilities

Conditional probability

• Is defined in terms of  the joint probability:

• Example:

 )|( highWBCcounttruepneumoniaP

0)(  s.t.  
)(

),(
)|(  BP

BP

BAP
BAP

)(

),(

highWBCcountP

highWBCcounttruepneumoniaP





 )|( highWBCcountfalsepneumoniaP

)(

),(

highWBCcountP

highWBCcountfalsepneumoniaP




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Conditional probabilities

Conditional probability distribution 

• Defines probabilities for all possible assignments, given a 

fixed assignment to some other variable values

)|(

)|(

highWBCcountfalsePneumoniaP

highWBCcounttruePneumoniaP





0.1

0.1

0.1

)|( WBCcountPneumoniaP

high

normal

low

Pneumonia

True False

WBCcount 08.0 92.0

0001.0 9999.0

0001.0 9999.0

3 element vector of 2 elements

)|( highWBCcounttruePneumoniaP 

Variable we 

condition on
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Bayes rule

Conditional probability. 

Bayes rule:

When is it useful?

• When we are interested in computing the diagnostic query 
from the causal probability

• Reason: It is often easier to assess causal probability

– E.g. Probability of pneumonia causing fever

vs. probability of pneumonia given fever

 
)(

),(
)|(

BP

BAP
BAP  )()|(),( APABPBAP 

 
)(

)()|(
)|(

BP

APABP
BAP 

 
)(

)()|(
)|(

effectP

causePcauseeffectP
effectcauseP 
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Bayes Rule in a simple diagnostic inference 

• Device (equipment) operating normally or malfunctioning.

– Operation of the device sensed indirectly via a sensor

• Sensor reading is either High or Low

Device status

Sensor reading

P(Device status)

0.9              0.1

normal       malfunctioning

Status\Sensor      High    Low

normal                0.1         0.9
malfunc               0.6         0.4

P(Sensor reading| Device status)
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Bayes Rule in a simple diagnostic inference.

• Diagnostic inference: compute the probability of device 
operating normally or malfunctioning given a sensor reading

• Note that typically the opposite conditional probabilities are 
given to us: they are much easier to estimate

• Solution: apply Bayes rule to reverse the conditioning 
variables

?)readingSensor |status Device(  highP















)readingSensor |status Device(

)readingSensor |status Device(

highningmalfunctioP

highnormalP
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Bayes Rule in a simple diagnostic inference 

• Device (equipment) operating normally or malfunctioning.

– Operation of the device sensed indirectly via a sensor

• Sensor reading is either High or Low

Device status

Sensor reading

P(Device status)

0.9              0.1

normal       malfunctioning

Status\Sensor      High    Low

normal                0.1         0.9
malfunc               0.6         0.4

P(Sensor reading| Device status)

?)readingSensor |status Device(  highP
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Bayes rule

Assume a variable A with multiple values           

Bayes rule can be rewritten as:

 
)(

)()|(
)|(

bBP

aAPaAbBP
bBaAP

jj

j





kaaa ,, 21

 
)()|(

)()|(

1 





k

i jj

jj

aAPaAbBP

aAPaAbBP

)|( bBA P for all values of kaaa ,, 21

Used in practice when we want to compute:
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Probabilistic inference 

Various inference tasks:

• Diagnostic task. (from effect to cause)

• Prediction task.  (from cause to effect)

• Other probabilistic queries (queries on joint distributions).

)|( TFeverPneumonia P

)|( TPneumoniaFever P

)(FeverP

),( ChestPainFeverP
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Inference

Any query  can be computed from the full joint distribution !!!

• Joint over a subset of variables is obtained through 

marginalization

• Conditional probability over set of variables, given  other 

variables’ values is obtained through marginalization and 

definition of conditionals 

 ),,,(),(  
i j

ji dDcCbBaAPcCaAP

 
),,,(

),,,(











i j

ji

i

i

dDcCbBaAP

dDcCbBaAP

 
),(

),,(
),|(

cCaAP

dDcCaAP
cCaAdDP





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Inference

Any query  can be computed from the full joint distribution !!!

• Any joint probability can be expressed as a product of 

conditionals via the chain rule. 

• Sometimes it is easier to define the distribution in terms of 

conditional probabilities:

– E.g. 

)()|(),,( 1,11,121  nnnn XXPXXXPXXXP 

)()|()|( 2,12,111,1  nnnnn XXPXXXPXXXP 

  
n

i ii XXXP
1 1,1 )|( 

)|( TPneumoniaFever P

)|( FPneumoniaFever P
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Modeling uncertainty with probabilities

• Defining the full joint distribution makes it possible to 

represent and reason with uncertainty in a uniform way

• We are able to handle an arbitrary inference problem

Problems:

– Space complexity. To store a full joint distribution we 

need  to remember             numbers.

n – number of random variables, d – number of values

– Inference (time) complexity. To compute some queries 

requires        .          steps. 

– Acquisition problem. Who is going to define all of the 

probability entries?       

 )(d nO

 )(d nO
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Medical diagnosis example 

• Space complexity. 

– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)

– Number of assignments: 2*2*2*3*2=48

– We need to define at least 47 probabilities.

• Time complexity.

– Assume we need to compute the marginal of Pneumonia=T 

from the full joint

– Sum over: 2*2*3*2=24 combinations

 )( TPneumoniaP

   
   


FTi FTj lnhk FTu

uPalekWBCcountjCoughiFeverP
, , ,, ,

),,,(
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Modeling uncertainty with probabilities

• Knowledge based system era (70s – early 80’s)

– Extensional non-probabilistic models

– Solve the space, time and acquisition bottlenecks in 
probability-based models 

– froze the development and advancement of KB systems 
and contributed to the slow-down of AI in 80s in general 

• Graphical model (late 80s, beginning of 90s)

• Bayesian belief networks

• Give solutions to the space, acquisition bottlenecks

• Partial solutions for time complexities
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Bayesian belief networks (BBNs)

Bayesian belief networks.

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C

)()(),( BPAPBAP 

)|()|()|,( CBPCAPCBAP 

)|(),|( CAPBCAP 


