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Supervised learning

Data: a set of n examples                                 

is an input vector of size d

is the desired output (given by a teacher)

Objective: learn the mapping 

s.t.

• Regression:

– Y is in R

• Classification

– Y is discrete
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Linear regression

• Function is a linear combination of input 

components
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Linear regression

• Shorter (vector) definition of the model

– Include bias constant in the input vector
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Linear regression. Error.

• Data:

• Function:

• We would like to have

• Error function measures how much our predictions deviate 

from the desired answers

• Learning: 

We want to find the weights minimizing the error !
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Linear regression. Example

• 1 dimensional input )( 1xx
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Linear regression. Example.

• 2 dimensional input
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Linear regression. Optimization.

• We want the weights minimizing the error

• For the optimal set of parameters, derivatives of the error with 

respect to each parameter must be 0

• Vector of derivatives:

2

,..1

2

,..1

)(
1

))((
1

i

T

i

ni

ii

ni

n y
n

fy
n

J xwx  


0xxwww ww  


ii

T

i

n

i

nn y
n

JJ )(
2

))(())((grad
1

0)(
2

)( ,,1,10,0

1








jididiii

n

i

n

j

xxwxwxwy
n

J
w

w



CS 1571 Intro to AI

Linear regression. Optimization.

• For the optimal set of parameters, derivatives of the error with 

respect to each parameter must be 0

• defines a set of equations in w
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Solving linear regression

By rearranging the terms we get a system of linear equations

with d+1 unknowns
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Solving linear regression

• The optimal set of weights satisfies:

Leads to a system of linear equations (SLE) with d+1

unknowns of the form

Solutions to SLE:

• e.g.  matrix inversion (if the matrix is singular)
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Gradient descent solution

• There are other ways to solve the weight optimization problem 
in the linear regression model

• A simple technique: 

– Gradient descent

Idea:

• Adjust weights in the direction that improves the Error

• The gradient tells us what is the right direction

- a learning rate (scales the gradient changes)
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Gradient descent method

• Descend using the gradient information

• Change the value of w according to the gradient
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Gradient descent method

• New value of the parameter

- a learning rate (scales the gradient changes)
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Gradient descent method

• Iteratively converge to the optimum of the Error function
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On-line learning.   Example
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Extensions of simple linear model
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Extensions of the linear model

• Models linear in the parameters we want to fit

• Basis functions examples:

– a higher order polynomial, one-dimensional input

– Multidimensional quadratic

– Other types of basis functions
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Example. Regression with polynomials.

Regression with polynomials of degree m

• Data points: pairs of 

• Feature functions: m feature functions

• Function to learn:
i
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Multidimensional additive model example
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Multidimensional additive model example
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Binary classification

• Two classes

• Our goal is to learn to classify correctly two types of examples  

– Class 0 – labeled as 0, 

– Class 1 – labeled as 1

• We would like to learn

• Zero-one error (loss) function

• Error we would like to minimize:

• First step: we need to devise a model of the function 
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Discriminant functions

• One way to represent a classifier is by using

– Discriminant functions

• Works for binary and multi-way classification

• Idea: 

– For every class i = 0,1, …k define a function

mapping

– When the decision on input x should be made choose the 

class with the highest value of

• So what happens with the input space?  Assume a binary case.  
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Discriminant functions

• Example: Two classes in 2-D

)()( 01 xx gg 

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



CS 2750 Machine Learning

Discriminant functions

• Discriminant functions g0(x) and g1(x) define the decision 

boundary 
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Logistic regression model

• Defines a linear decision boundary

• Discriminant functions:

• where
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Logistic function

function

• Is also referred to as a sigmoid function

• Replaces the threshold function with smooth switching 

• takes a real number and outputs the number in the interval [0,1]
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Logistic regression model

• Discriminant functions:

• Values of discriminant functions vary in [0,1]

– Probabilistic interpretation

),|1( wxyp

x

Input vector



1

1x

0w

1w

2w

dw
2x

z

dx

)()(1 xwx
Tgg  )(1)(0 xwx

Tgg 

)()(),|1()( 1 xwxxwwx,
Tggypf 



CS 2750 Machine Learning

Logistic regression

• We learn a probabilistic function

– where f describes the probability of class 1 given x

Note that:

• Transformation to binary class values:
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Logistic regression model.  Decision boundary

• Logistic Regression defines a linear decision boundary

Example: 2 classes (blue and red points)
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Likelihood of outputs

• Let

• Then

• Find weights w that maximize the likelihood of outputs

– Apply the log-likelihood trick The optimal weights are the 

same for both the likelihood and the log-likelihood

Logistic regression: parameter learning
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Logistic regression: parameter learning

• Log likelihood

• Derivatives of the loglikelihood

• Gradient descent:

k-th update of the weights
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Gradient algorithm. Example.
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Gradient algorithm. Example.
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Gradient algorithm. Example.
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Decision trees

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region
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Decision trees

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Learning decision trees

How to construct /learn the decision tree?

• Top-bottom algorithm:

– Find the best split condition (quantified 

based on the impurity measure)

– Stops when no improvement possible

• Impurity measure I:

– measures how well are the two classes in the training data 

D separated …. I(D) 

– Ideally we would like to separate all 0s and 1

• Splits: finite or continuous value attributes

Continuous value attributes conditions: 5.03 x

x

t f
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Impurity measure

Let

Impurity measure I(D) 

• defines how well the classes are separated

• in general the impurity measure should satisfy:

– Largest when data are split evenly for attribute values

– Should be 0 when all data belong to the same class
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p i
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|| D - Total number of data entries in the training dataset

|| iD - Number of data entries classified as i

- ratio of instances classified as i 
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Impurity measures

• There are various impurity measures used in the literature

– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Impurity measures

• Gain due to split – expected reduction in the impurity 

measure (entropy example)
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Decision tree learning

• Greedy learning algorithm:

Repeat until no or small improvement in the purity

– Find the attribute with the highest gain

– Add the attribute to the tree and split the set accordingly

• Builds the tree in the top-down fashion

– Gradually expands the leaves of the partially built tree

• The method is greedy

– It looks at a single attribute and gain in each step

– May fail when the combination of attributes is needed to  

improve the purity (parity functions)
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Decision tree learning

• Limitations of greedy methods

Cases in which a combination of two or more attributes 

improves the impurity
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Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may 

do worse in terms of  the generalization error 

Solutions to the overfitting problem:

• Solution 1.

– Prune branches of the tree built in the first phase

– Use validation set to test for the overfit

• Solution 2. 

– Test for the overfit in the tree building phase

– Stop building the tree when performance on the validation set 

deteriorates 
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Appendix: Derivation of the gradient

• Log likelihood

• Derivatives of the loglikelihood

)1log()1(log),(
1

iii

n

i

i yyDl  


w

)),(())((),(
11

iii

n

i

i

T

ii

n

i

fygyDl xwxxwxww  


 
j

i
n

i

iiii

ij w

z
yy

z
Dl

w 













1

)1log()1(log),( w

 
i

i

i

i

i

i

i

iiiii

i z

zg

zg
y

z

zg

zg
yyy

z 















 )(

)(1

1
)1(

)(

)(

1
)1log()1(log 

))(1)((
)(

ii

i

i zgzg
z

zg






Derivative of a logistic function
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