CS 1571 Introduction to AI Lecture ?

Machine Learning of BBNs from data

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Bayesian belief network

1. Directed acyclic graph: Nodes = random variables Links = dependencies between variables (missing links imply conditional independences among variables)
2. Local conditional distributions

Bayesian belief network

- How to obtain the parameters of the BBNs?

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

$$
D_{i}=\mathbf{x}_{i} \quad \text { a vector of attribute values }
$$

Objective: try to estimate the underlying true probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(X)$)

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters Θ
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find parameters $\hat{\Theta}$ that fit the data the best
For BBNs the parameters are local conditional probabilities

- What is the best set of parameters?
- There are various criteria one can apply here.

Parameter estimation. Basic criteria.

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$
ξ - represents prior (background) knowledge
- Maximum a posteriori probability (MAP)
maximize $\quad p(\Theta \mid D, \xi)$
Selects the mode of the posterior

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail (1- θ)
Objective:
We would like to estimate the probability of a head $\hat{\boldsymbol{\theta}}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your estimate of the probability of a head ?

$$
\tilde{\theta}=?
$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your choice of the probability of a head?
Solution: use frequencies of occurrences to do the estimate

$$
\tilde{\theta}=\frac{15}{25}=0.6
$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ
Probability of an outcome of a coin flip x_{i}

$$
P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \longleftarrow \quad \text { Bernoulli distribution }
$$

- Combines the probability of a head and a tail
- So that x_{i} is going to pick its correct probability
- Gives θ for $x_{i}=1$
- Gives $(1-\theta)$ for $x_{i}=0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head probability of a tail
Assume: a sequence of independent coin flips $D=$ H H T H T H \quad (encoded as $D=110101$)
What is the probability of observing the data sequence \mathbf{D} :

$$
P(D \mid \theta)=?
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head probability of a tail $(1-\theta)$
Assume: a sequence of coin flips D = H Н Т Н Т Н encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head probability of a tail $(1-\theta)$
Assume: a sequence of coin flips D = Н Н Т Н Т Н encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head probability of a tail
Assume: a sequence of coin flips D = Н Н Т Н Т Н encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& P(D \mid \theta)=\prod_{i=1}^{6} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ
Our learning goal:

- Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$
P(D \mid \theta)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Intuition:

- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

$$
\operatorname{Error}(D, \theta)=-P(D \mid \theta)
$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Maximum likelihood estimate

$$
\theta_{M L}=\underset{\theta}{\arg \max } P(D \mid \theta, \xi)
$$

Optimize log-likelihood (the same as maximizing likelihood)

$$
l(D, \theta)=\log P(D \mid \theta, \xi)=\log \prod_{i=1}^{n} \theta_{n}^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}=
$$

$$
\sum_{i=1}^{n} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)=\log \theta \sum_{i=1}^{n} x_{i}+\log (1-\theta) \frac{\sum_{i=1}^{n}\left(1-x_{i}\right)}{/}
$$

N_{1} - number of heads seen $\quad N_{2}$ - number of tails seen

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$
l(D, \theta)=N_{1} \log \theta+N_{2} \log (1-\theta)
$$

Set derivative to zero

$$
\frac{\partial l(D, \theta)}{\partial \theta}=\frac{N_{1}}{\theta}-\frac{N_{2}}{(1-\theta)}=0
$$

Solving

$$
\theta=\frac{N_{1}}{N_{1}+N_{2}}
$$

ML Solution: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of head and tail?

Head: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}=\frac{15}{25}=0.6$
Tail:

$$
\left(1-\theta_{M L}\right)=\frac{N_{2}}{N}=\frac{N_{2}}{N_{1}+N_{2}}=\frac{10}{25}=0.4
$$

Learning of BBN parameters. Example.

Learning of BBN parameters. Example.

Data D (different patient cases):

Pal Fev Cou HWB Pneu

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Estimates of parameters of BBN

- Much like multiple coin tosses
- A "smaller" learning problem corresponds to the learning of exactly one conditional distribution
- Example:

$$
\mathbf{P}(\text { Fever } \mid \text { Pneumonia }=T)
$$

- Problem: How to pick the data to learn?

Learning of BBN parameters. Example.

Data \mathbf{D} (different patient cases):

Pal Fev Cou HWB Pneu

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

How to estimate:
$\mathbf{P}($ Fever \mid Pneumonia $=T)=$?

Learning of BBN parameters. Example.

Learn: $\mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 1: Select data points with Pneumonia=T

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 1: Ignore the rest

Pal	Fev	Cou	HWB	Pneu
F	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 2: Select values of the random variable defining the distribution of Fever

Pal	Fev	Cou	HWB	Pneu
F	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	T	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}

Learning of BBN parameters. Example.

Learn: $\mathbf{P}($ Fever \mid Pneumonia $=T)$

Step 2: Ignore the rest

Fev
F
F
T
T
T

Learning of BBN parameters. Example.

Learn: $\mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 3: Learning the ML estimate

Fev
F
F
T
T
T

Types of learning

- Supervised learning
- Learning mapping between input \mathbf{x} and desired output \mathbf{y}
- Teacher gives me y's for the learning purposes
- Unsupervised learning
- Learning relations between data components
- No specific outputs given by a teacher
- Reinforcement learning
- Learning mapping between input \mathbf{x} and desired output y
- Critic does not give me y's but instead a signal (reinforcement) of how good my answer was
- Other types of learning:
- Concept learning, Active learning, Transfer learning, Deep learning

Supervised learning

Data: $\quad D=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\} \quad$ a set of \boldsymbol{n} examples

$$
D_{i}=\left\langle\mathbf{x}_{i}, y_{i}\right\rangle
$$

$\mathbf{x}_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots x_{i, d}\right)$ is an input vector of size d
y_{i} is the desired output (given by a teacher)
Objective: learn the mapping $f: X \rightarrow Y$
s.t. $\quad y_{i} \approx f\left(\mathbf{x}_{i}\right)$ for all $i=1, . ., n$

- Regression: Y is continuous

Example: earnings, product orders \rightarrow company stock price

- Classification: Y is discrete

Example: handwritten digit in binary form \rightarrow digit label

