CS 1571 Introduction to AI Lecture ?

Machine Learning of BBNs from data

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Bayesian belief network

- Directed acyclic graph: Nodes = random variables
 Links = dependencies between variables (missing links imply conditional independences among variables)
- 2. Local conditional distributions

Bayesian belief network

How to obtain the parameters of the BBNs?

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: try to estimate the underlying true probability distribution over variables X, p(X), using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

Learning via parameter estimation

In this lecture we consider parametric density estimation Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$
- A model of the distribution over variables in X with parameters Θ
- Data $D = \{D_1, D_2, ..., D_n\}$

Objective: find parameters $\hat{\Theta}$ that fit the data the best For BBNs the parameters are local conditional probabilities

- What is the best set of parameters?
 - There are various criteria one can apply here.

Parameter estimation. Basic criteria.

Maximum likelihood (ML)

maximize $p(D | \Theta, \xi)$

 ξ - represents prior (background) knowledge

Maximum a posteriori probability (MAP)

maximize
$$p(\Theta | D, \xi)$$

Selects the mode of the posterior

$$p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi)p(\Theta \mid \xi)}{p(D \mid \xi)}$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** θ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTTTHTHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What would be your estimate of the probability of a head?

$$\tilde{\theta} = ?$$

Parameter estimation. Example

- **Assume** the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$$D = H H T H T H$$
 (encoded as $D = 110101$)

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = ?$$

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1 - \theta)\theta(1 - \theta)\theta$$

likelihood of the data

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$
$$P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ **Our learning goal:**

• Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$P(D | \theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Intuition:

• more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \underset{\theta}{\operatorname{arg max}} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i)$$

$$N_1 - \text{number of heads seen} \qquad N_2 - \text{number of tails seen}$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$l(D,\theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTTTHTHHHHTHHHHT

– Heads: 15

- **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of head and tail?

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$
Tail: $(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$

Data D (different patient cases):

Pal	Fev	Cou	HWB	Pneu
T	T	T	T	\mathbf{F}
T	F	F	\mathbf{F}	F
F	F	T	T	T
F	F	T	\mathbf{F}	T
F	T	T	T	T
T	F	T	F	F
F	F	F	F	F
T	T	F	\mathbf{F}	F
T	\mathbf{T}	T	T	T
F	T	F	T	T
T	F	F	T	F
\mathbf{F}	T	F	\mathbf{F}	F

Estimates of parameters of BBN

- Much like multiple coin tosses
- A "smaller" learning problem corresponds to the learning of exactly one conditional distribution
- Example:

$$\mathbf{P}(Fever | Pneumonia = T)$$

• Problem: How to pick the data to learn?

Data D (different patient cases):

Pal	Fev	Cou	HWB	Pneu
T	T	T	T	\mathbf{F}
T	F	F	\mathbf{F}	F
F	\mathbf{F}	T	T	T
F	\mathbf{F}	T	\mathbf{F}	T
F	T	T	T	T
T	F	T	F	F
F	\mathbf{F}	F	F	F
T	T	F	F	F
T	T	T	T	T
F	T	F	T	T
T	F	F	T	F
F	T	F	\mathbf{F}	\mathbf{F}

How to estimate:

$$\mathbf{P}(Fever | Pneumonia = T) = ?$$

Learn: P(Fever | Pneumonia = T)

Step 1: Select data points with Pneumonia=T

```
Pal Fev Cou HWB Pneu
           F
    \mathbf{F} \mathbf{T} \mathbf{T}
       \mathbf{F} \mathbf{T} \mathbf{F}
             F
```


Learn: P(Fever | Pneumonia = T)

Step 1: Ignore the rest

Fev	Cou	HWB	Pneu
\mathbf{F}	T	\mathbf{T}	\mathbf{T}
\mathbf{F}	T	\mathbf{F}	T
T	T	T	T
T	T	T	T
	F F T	F TF TT T	F T F T T T

 \mathbf{F} \mathbf{T} \mathbf{F} \mathbf{T}

Learn: P(Fever | Pneumonia = T)

Step 2: Select values of the random variable defining the distribution of Fever

Pal Fev Cou HWB Pneu F F T T F F T F T F T T T T T T T T T F T F T T

Learn: P(Fever | Pneumonia = T)

Step 2: Ignore the rest

Fev

F

F

T

T

T

Learn: P(Fever | Pneumonia = T)

Step 3: Learning the ML estimate

Types of learning

Supervised learning

- Learning mapping between input x and desired output y
- Teacher gives me y's for the learning purposes

Unsupervised learning

- Learning relations between data components
- No specific outputs given by a teacher

Reinforcement learning

- Learning mapping between input x and desired output y
- Critic does not give me y's but instead a signal (reinforcement) of how good my answer was

Other types of learning:

Concept learning, Active learning, Transfer learning,
 Deep learning

Supervised learning

Data:
$$D = \{D_1, D_2, ..., D_n\}$$
 a set of n examples $D_i = \langle \mathbf{x}_i, y_i \rangle$ $\mathbf{x}_i = (x_{i,1}, x_{i,2}, \cdots x_{i,d})$ is an input vector of size d y_i is the desired output (given by a teacher) **Objective:** learn the mapping $f: X \to Y$ s.t. $y_i \approx f(\mathbf{x}_i)$ for all $i = 1, ..., n$

• Regression: Y is continuous

Example: earnings, product orders → company stock price

Classification: Y is discrete

Example: handwritten digit in binary form \rightarrow digit label