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Abstract— In Wireless Sensor Networks (WSNs), the users’
objective is to extract useful global information by collecting
individual sensor readings. Conventionally, this is done using
in-network aggregation on a spanning tree from sensors to
data sink. However, the spanning tree structure is not robust
against communication errors; when a packet is lost, so is a
complete subtree of values. Multipath routing can mask some of
these errors, but on the other hand, may aggregate individual
sensor values multiple times. This may produce erroneous
results when dealing with duplicate-sensitive aggregates, such
as SUM, COUNT, and AVERAGE.

In this paper, we present and analyze two new fault toler-
ant schemes for duplicate-sensitive aggregation in WSNs: (1)
Cascaded RideSharing and (2) Diffused RideSharing. These
schemes use the available path redundancy in the WSN to
deliver a correct aggregate result to the data sink. Compared
to state-of-the-art, our schemes deliver results with lower root
mean square (RMS) error and consume much less energy and
bandwidth. RideSharing can consume as much as 50% less
resources than hash-based schemes, such as SKETCHES and
Synopsis Diffusion, while achieving lower RMS for reasonable
link error rates.

I. INTRODUCTION

The convergence of sensing and wireless technolo-
gies has enabled the powerful networking paradigm of
Wireless Sensor Networks (WSNs). WSNs are expected
to have significant impact on the efficiency of many
military and civilian applications, such as combat field
surveillance, environmental monitoring, security and dis-
aster management, data gathering, and alarm systems [2].
In large-scale WSN deployments, sensor measurements
are often aggregated within the network (in-network pro-
cessing) to filter redundancy and reduce communication
overhead and energy consumption [15], [16], [22].

However, communication errors are frequent in
WSN [28], and when a spanning-tree is used for ag-
gregation (e.g., [18]), a packet loss can result in the loss
of the result of a complete subtree. Multipath routing
can overcome losses by duplicating and forwarding each
sensor measurement over multiple paths [12]. Some ag-
gregate functions, such as MIN and MAX, are unaffected
by duplicates, but some others, such as SUM, COUNT,
and AVG (short for AVERAGE), are duplicate-sensitive

and may produce wrong results with duplicate aggre-
gation. To handle duplicate-sensitive aggregation, the
hash-based framework has been proposed, most notably
SKETCHES [6] and Synopsis Diffusion [19], [21].

In this paper, we propose the RideSharing (RS)
scheme for fault-tolerant, duplicate-sensitive aggregation
in WSNs. RS uses the inherent redundancy of the
wireless medium; when a packet is lost between two
sensors because of a link error, it is possible that one or
more other sensors have correctly overheard the packet.
If some of them are yet to send their own values,
they correct the error by aggregating the missing value
into theirs. As a result, error recovery has no overhead
because the lost packet is aggregated (or RideShares)
with another packet to be transmitted.

We present two distributed mechanisms to support
duplicate-sensitive aggregation by ensuring that each
sensor value is aggregated into the final result at most
once (i.e., no more than 100% of the value is aggre-
gated). In cascaded RideSharing, at most one overhear-
ing sensor corrects an error, while in diffused RideShar-
ing each overhearing sensor aggregates a share of the
missing value, whereby the sum of these shares never
exceeds the value to be corrected. It should be mentioned
that, although the RS schemes are designed to handle
duplicate-sensitive aggregations (e.g., SUM, COUNT,
AVG), it can similarly handle the non-problematic case
of duplicate-insensitive aggregation (e.g. MAX, MIN)
where the packet can be aggregated in all the neighbors’
messages.

We compare RS with state-of-the-art schemes
for duplicate-sensitive aggregation in WSNs, namely
SKETCHES [6] and Synopsis Diffusion [19], [21].
Through simulations, we show that RS can consume as
much as 50% less resources (energy and bandwidth) than
do hash-based schemes while delivering more accurate
results for reasonable link error rates (up to 20%). More-
over, RS significantly outperforms hash-based schemes
for all link error rates when only a few sensors’ values
are requested. In fact, this is important because having
a subset of nodes participate in the query reply is a
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frequent case and can happen, for example, when a query
is dispatched to the WSN and not all sensors satisfy the
particular request (e.g., the sensor values do not match
the SQL WHERE clause).

The rest of the paper is organized as follows. In the
next section, we review reliable aggregation schemes
proposed in the literature. Section III presents our RS
schemes. Section IV describes our simulation study and
Section V concludes the paper.

II. RELIABLE AGGREGATION IN WSNS

In this section, we review related work addressing
the problem of reliable aggregation in WSNs. Typically,
a “data sink” floods the WSN with a query, such as
MAX, SUM, or AVG, and sensors provide the data sink
with the information they gather either periodically or
per-query. Each sensor could send its 〈id,value〉 pair
to the data sink, but this would increase the data being
transmitted in the network. In-network aggregation can
reduce this communication overhead substantially [14],
[18]. Sensors are arranged in a spanning tree rooted at
the sink, each intermediate node receives messages from
its children, computes an aggregate (e.g., SUM) of its
children’s and own values, and then forwards to its parent
only a single message with the aggregate value. Although
efficient, the aggregation spanning trees are not robust
against communication errors, which are very common
in sensor networks. When a packet is lost because of a
link error, a complete subtree of values is lost, possibly
leading to an incorrect aggregate result [6], [18], [19],
[21].

Several mechanisms have been proposed for reliable
data delivery in WSNs. For example, error-correction [7],
[20], [22], [23], retransmission [17], [25], [27], multipath
routing [4], [6], [21], partial parents [18], and hash-
based [6], [19], [21] schemes.

Forward Error Correction (FEC) increases commu-
nication reliability in WSNs by efficiently reducing
the effective link error rate [22]. Therefore, it benefits
any reliable aggregation scheme including ours. Packet-
Combining [7] is an error correction scheme which,
similar to our RS, uses the inherent redundancy of the
wireless medium. Nodes buffer all received packets even
if corrupted; the original packet may then be recovered
from combining two or more corrupted versions. How-
ever, Packet-Combining across multi-hops cannot handle
data aggregation because it assumes packet contents are
not altered by intermediate nodes. On the other hand,
application-level error correction [20], [23], exploits
spatio-temporal correlations of sensor reports to predict
missing values. Our RS scheme improves data accuracy

even when prediction models are hard to develop or
when unpredicted events occur.

Examples of fault-tolerant protocols that use retrans-
mission are PSFQ [27], RMST [25], and SPMS [17].
PSFQ and RMST use retransmission for hop-by-hop
error recovery, while SPMS recovers from errors by
retransmission over backup routes. Retransmission, can
suffer from two drawbacks: (1) delayed query response,
because each level in the routing tree waits for re-
transmissions before proceeding with its own transmis-
sion; and (2) packet overhead, because some kind of
handshake (e.g., ACK packets) is used for error detec-
tion [18].

In ring-based multipath routing [6], [21], sensors are
arranged into a ring topology, where a node located in
ring i attaches itself to some nodes (parents) in ring i−1.
When a node has something to transmit, it multicasts to
all its parents, and each parent aggregates the received
data with that received from other children before for-
warding the aggregate result. Multipath routing, however,
produces wrong results for duplicate-sensitive aggregates
(e.g., COUNT, SUM, AVG); because a node value is ag-
gregated over each path, it can be incorporated multiple
times into the final result.

Exor [4] is a fault-tolerant routing protocol for adhoc
networks. It assumes that when a packet is lost some
other nodes may have correctly overheard it and will then
try to re-route the lost packet. However, Exor requires
the destination to detect and drop duplicates and thus, it
can not be used with data aggregation.

Partial parents, an optimization of the TAG
scheme [18], uses the ring topology as well. Each
data value is decomposed into a number of fractions,
and each fraction is aggregated by a distinct parent.
Results in [6] show a small improvement of this
optimization over TAG; although each link error results
in losing a smaller value compared to the spanning-tree,
more links are used and thus more errors occur.

Hash-based schemes [6], [19], [21] are the most
relevant related work to RS. These schemes have been
developed to handle the same problem of fault-tolerant,
duplicate-sensitive aggregation in sensor networks. In
this paper we compare RS to a hash-based scheme,
namely Synopsis Diffusion (SD) [21].

The main idea of hash-based schemes is to transform
duplicate-sensitive aggregation functions into duplicate-
insensitive ones. For instance, the COUNT function,
which is duplicate sensitive, is transformed into a bitwise
OR operation (ORing is duplicate-insensitive: x OR y =
x OR (y OR y OR y · · · )). The ORed bit vectors are
generated by hashing each sensor id into one bit in a
hash table. Suppose that a number of distinct values have
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been hashed into the hash table. Each value sets a bit in
the hash table to 1. Suppose the position of the least
significant 0 in the resulting hash table is z. Then, the
number of distinct values is estimated as 2z

0.77351 (see [10]
for more details). The position of the least significant 0
is a more accurate estimator than the number of 1-bits
[10]. To improve the estimation accuracy, a number, m,
of hash tables are used, and the values to be counted are
distributed among these hash tables. Assume the position
of the least significant 0 is zi in hash table i, and the
average of the zi’s is ẑ. The estimated value in this case
is

2ẑ

0.77351
×m (1)

In other words, each of the m hash tables estimates 1
m th

of the count.
Although they are a great improvement on aggre-

gation in WSNs, hash-based schemes suffer from the
following drawbacks: (1) their computation and storage
requirements are high; (2) a distinct algorithm has to be
devised for each aggregation function; for example, the
algorithm used for COUNT can not be readily used for
SUM although both functions are simply additions; (3)
a relatively large bit-vector (e.g., O(log(n)) for COUNT,
where n is the total number of sensors) is attached
to each data message, consuming extra energy and
bandwidth; (4) the probability that the correct aggregate
result is delivered severely degrades when the number of
nodes participating in the query decreases (we elaborate
on this issue in Section IV).

III. RIDESHARING FAULT-TOLERANT AGGREGATION

Our new RideSharing (RS) scheme addresses fault-
tolerant, in-network aggregation of duplicate-sensitive
functions. RS exploits the inherent redundancy of the
shared wireless medium to detect and correct commu-
nication errors with low overhead. When a message
between two nodes is lost we assume that one or more
other sensors have correctly overheard the lost message.
When some of the overhearing sensors have not yet
transmitted their own values, they can aggregate the
missing value into theirs (RideSharing).

It should be mentioned that the assumption of over-
hearing sensors (which has also been adopted in other
work [4], [7], [12]) does not constrain RS to only dense
networks because such assumption is easily justified
when a sensor has more than one neighbor within its
range. In Section III-F we present an optimization to
be used in low-density WSNs, and in Section IV we
simulate RS for different network densities.

It should also be noted that, RS assumes, similar to the
related work mentioned in Section II, that the network is

static on a per query basis. In other words, the state of the
network is assumed to be unchanged for a single query,
otherwise, the query aggregate result will be “stale” data.

A. Track Topology

RS organizes sensors in a track graph [9]. As shown
in Figure 1, the data sink is in track 0, sensors one hop
away from the data sink are in track 1, and so on. A
directed edge from a child C to a parent P1 indicates
that P1 and C are within each other’s radio range and that
P1 listens to C’s communication. The difference between
our track topology and the ring topology [6], [21] is that,
in addition to edges between adjacent levels, tracks also
have edges between sensors of the same track.

Fig. 1. Track Topology

Serving different purposes, edges are classified into
three types: primary, backup, and side edges; primary
and backup edges are between adjacent tracks (between
a sensor node and its parents). Side edges are within
the same track (among parents). Each sensor selects one
parent (and correspondingly one edge) as its primary
parent and zero or more parents as backups. Primary
edges form a spanning tree and are used as long as
no communication error occurs. If an error occurs in a
primary edge, it is possible that some backup edges have
successfully delivered the sent value. Parents coordinate
using side edges so that the missing value is aggregated
at most once (i.e., no more than 100% of the value is
aggregated). It should be noted that a sensor can be a
primary parent for some children and at the same time a
backup parent for some others. Also, we assume that
errors occur independently in primary, backup and/or
side edges.

B. Error Detection and Correction

Errors are detected using a small bit vector that each
parent attaches to each data message it sends. The bit
vector efficiently encodes the ids of children whose
values have been correctly received and aggregated.
By overhearing the bit vectors over side edges backup
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parents detect link errors when one or more children
are missing from the bit vector. Each parent determines
the bit positions of its children inside the other parents’
bit vectors during topology construction, whereby each
parent broadcasts children ids and their bit positions
inside its bit vector.

The bit vector contains two bits for each child of
which the sensor is primary or backup parent. The first
bit, the e-bit, indicates error in the child’s primary edge.
If the primary parent does not receive from a child, it
sets the e-bit to 1. Overhearing the primary parent signal
an error, a backup parent sets its e-bit to 1 as well
to propagate the error signal. The other bit, the r-bit,
indicates that the sensor is correcting or helping correct
the error. The detailed use of the e-bit and the r-bit will
be explained in the next subsections.

We note that there is a difference in functionality
between what we call a backup-parent and what a
backup means in fault-tolerance literature. Traditionally,
a backup is a stand-by element which operates only
whenever an error is detected. In our case, the backup-
parent is an active sensor having its own children and
aggregating its value with the values of its children
whether or not an error occurs; when an error is detected,
the backup accounts for the missed value in the message
that it is going to transmit anyway, that is, without
sending extra messages. As a result, the RS overhead is
only associated with error detection (receiving children’s
and parents’ messages), while there is no overhead
associated with error correction.

C. Illustrating Example

As an example, Figure 1 shows a sensor C in track T2

with two parents, primary P1 and backup P2. Assuming
no error, both P1 and P2 receive C’s value, but only P1

aggregates it. Now, assume a link error in the primary
edge. P2 will receive the bit vector of P1 over the side
edge P1 ↔ P2, detect that C is missing, and correct the
error by aggregating C’s value into its own.

To support duplicate-sensitive aggregation, we ensure
that errors are corrected in such a way that every sensor
reading is aggregated at most once (again, this means
that no more than 100% of the value is aggregated).
When there is only one backup parent, as in the previous
example, the solution is trivial. On the other hand,
handling this issue for more than one backup parent
requires coordination between the parents. We propose
two mechanisms, namely cascaded RS and diffused RS,
to achieve such coordination. These two schemes are
explained in details in the next two sections.

D. Cascaded RideSharing

In cascaded RS, as long as no error occurs, primary
parents aggregate and forward their children’s values.
When an error occurs (which can be done by checking
the e-bit and r-bit) in a primary link, each backup
parent decides whether or not to correct the error based
on its order in a correction sequence. This correction
sequence can be, for example, an ascending order of
parent ids. The first backup parent in this sequence
(parent with smallest id) attempts error correction first.
If the first backup parent does not receive the child’s
value or does not detected the error, the second backup
parent attempts the correction, and so on. Deciding the
correction sequence based on other criteria (e.g., link
qualities) and handling parent joins and leaves is beyond
the scope of this paper.

The cascaded RS can be viewed as if each backup
parent is assigned a virtual token (for each child). The
token is released when the parent transmits without
aggregating the child’s value. Every parent that hears
a token released acquires the token. A backup parent
aggregates a child’s value and sets the r-bit if (1) it has
received a bit vector with the e-bit set (indicating an
error in the primary link), (2) it has correctly received the
child’s value, and (3) it has acquired tokens of all parents
preceding it in the correction sequence. Token release
is detected when the r-bit is unset. To avoid multiple
counting, if a parent fails to acquire preceding parents’
tokens, it takes no corrective action.

(a) (b)

Fig. 2. Cascaded Ridesharing

Figure 2 depicts an example. Child C has a primary
parent, 1, and three backup parents, 2, 3, and 4. The
correction sequence is 2, 3, 4. As long as no error occurs
in the primary link, C’s value, Vc, is aggregated at its
primary parent. In Figure 2(a), an error in the primary
link triggers the primary parent to signal the error by
setting the e-bit to one upon transmitting its own value
(and the value of its other children, if any). Receiving
the primary parent’s bit vector, parent 2, detects the error
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and corrects it by aggregating Vc. Parent 2 sets both r-bit
and e-bit to 1 and sends the aggregated value with the
piggybacked bit vector. Although parent 3 detects the
error, it refrains from correcting it after it hears the bit
vector of parent 2 with both bits set.

Figure 2(b) depicts two link errors from C to parents 1
and 2. In this case, parent 2 fails to correct the error and
releases its token by setting r-bit to zero. When parent
3 receives parent 2’s bit vector, it detects both the error
and the failure of node 2 to correct. Acquiring node 2’s
token, node 3 aggregates Vc and sets both r-bit and e-bit
to one in order not to release its token.

In the previous example, two desirable properties
hold: (1) each parent’s sending order is the same as its
correction order and (2) all parents are within range.
In Section III-F we propose optimizations to guarantee
these properties. However, below we argue by contradic-
tion for the correctness of RS, even if these properties
do not hold.

Assume that more than one parent aggregates the child
value (i.e., corrects the error in transmission). Consider
any two of them x and y and assume without loss of
generality that x sends before y. If x is before y in the
correction sequence and x corrects the error, y will not
acquire x’s token because x will not release it. Thus, y
will not correct contradicting the initial assumption. On
the other hand, if y precedes x in the correction sequence,
x will not acquire y’s token because x sends first. Hence,
x will not correct, similarly contradicting the assumption.
The above argument is valid even with errors between
parents or if some parents are outside each other’s range.

E. Diffused RideSharing

Another approach to ensure that corrective actions
avoid duplicate aggregation is to divide the child’s value
to be corrected among backup parents. For example, if
the aggregation function is SUM, each backup parent
aggregates a part so that the sum of the aggregated parts
equals the child’s value. If a backup parent does not
detect the error or has not received the child’s value, it
will not aggregate its share, while the remaining parents
adjust their shares to compensate for the missing part.

Each backup parent is assigned a virtual share of the
child’s value to be corrected, so that the child’s value
is divided (e.g., equally) among its backup parents. So,
for instance, if the child’s value is Vc and there are 3
backup parents, each virtual share is virtual share =

Vc
#backup parents = Vc

3 . A backup parent its virtual share
only when it has detected an error and has correctly
received Vc; it then sets both e-bit and r-bit to one.
When a parent does not correct the value, its virtual
share is further divided among other parents who have

not yet transmitted. To implement this compensation,
each backup parent maintains a counter of the remaining
parents, which are backup parents, including itself, that
it has not yet heard; when it hears a parent with either r-
bit or e-bit set to zero (indicating that the parent has not
aggregated its virtual share), it increases its virtual share
by virtual share

#rem parents ; because it is a distributed algorithm, a
parent does not know exactly what is the current share
of another parent, so it uses its current virtual share as
an estimator of the missing parent’s share.

(a) (b)

(c) (d)

Fig. 3. Diffused RideSharing

For example, in Figure 3(b), when an error occurs
between child C and its primary parent, Vc is divided
among the three backup parents, so that each aggregates
one third of C’s value. If parent 2 has not received Vc

(Figure 3(c)), it sets the r-bit to zero. Each of parents 3
and 4 adjusts its virtual share to one half (= 1

3 + 1
3×2 )

upon hearing 2’s bit vector. If both links from C to 2 and
3 are in error, parent 4 adjusts its part and aggregates the
whole Vc as shown in Figure 3(d).

As a proof of correctness, the total aggregated value
of each child never overshoots Vc. If there is no error,
Vc is aggregated only at the primary parent. Upon
detecting an error, if all backup parents aggregate their
shares, the total aggregated value is also Vc, the sum
of the virtual shares. When a parent fails to aggregate
its share, the virtual shares of the remaining backup
parents are increased. The total increase, however, never
exceeds the missed share, because the local remaining
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parents counter (the denominator) never underestimates
the actual value.

F. RideSharing Enhancements

In RS, backup parents correct primary link error. RS’s
fault-tolerance can be further improved by applying any
of the following optimizations:

1) Co-tracking: Normally, each child selects its par-
ents from the adjacent track that is closer to the
data sink (e.g., in Figure 1, C in track T2 selects
P1 and P2 in track T1). When there is only one
reachable sensor in that track, the child selects
parents from its own track. In such situations, co-
tracking allows the child’s value to be corrected if
there is an error in the primary link. The primary
parent is selected from the same track, so that the
backup parent in the adjacent track will have a
chance to correct an error in the primary link. To
avoid loops, whereby two sensors end up selecting
each other as primary, we ensure that the parents
selected from the same track have a higher node
id than the child.

2) Parent Clique: The ability of a backup parent
to correct an error depends on hearing the other
parents. Thus, to increase the probability of error
correction, it is possible for each child to select
parents that hear each other (i.e., the parents thus
form a clique). We add this optimization because a
backup parent needs to overhear a bit vector with
the e-bit set before attempting to correct an error.
In cascaded RS, it has to acquire the preceding
parents’ tokens and in diffused RS, by hearing
other parents, each backup parent maintains an
accurate estimate of the number of remaining
parents.

3) Transmission Order: To increase the probability
that an error is corrected, backup parents should
send their messages after primary parents. Such
transmission order can be achieved deterministi-
cally by a TDMA scheme or probabilistically by
a prioritized contention-based scheme.
A naive but inefficient (longer delay) TDMA allo-
cates a time slot for each node. For example, the
schedule starts by the farthest track from the data
sink and proceeds inward, whereby the first sensor
to send in each track is the one with the smallest
id within the track followed by the second smallest
and so on. In such transmission order, each child
selects the primary parent as the parent with the
smallest id. A more efficient TDMA scheme (e.g.,
[3], [11], [26]) can also be used, for example by
using graph-coloring algorithm is used to assign

transmission slots for nodes. Nodes outside each
other range can transmit simultaneously (have the
same color). Thus, the schedule is compacted and
the end-to-end delay is minimized. In this scheme,
the child selects the parents with distinct colors
and the primary parent is selected to be the one
transmitting first.
The transmission order can also be enforced with a
contention based scheme (e.g., [13]) in which each
node is assigned a priority (contention window
size) to access the medium. The transmission pri-
orities can be based on node IDs, residual energies
or any other criteria. In this case the child picks
as primary the parent with the highest priority in
the child’s parents list.

IV. EVALUATION

In our evaluation we compared our RS scheme (cas-
caded and diffused) with a hash-based scheme, namely
Synopsis Diffusion (SD). We present results for two SD
schemes, SD-20 [21] and SD-40 [19], the first uses 20
hash tables per message while the second uses 40 hash
tables (increased accuracy but with higher overhead).
The spanning tree approach [18] (which provides no
fault-tolerance but has the least overhead) is used as the
basis for the comparison. The following metrics are used
to evaluate the performance of the different schemes:

• Average relative RMS, that is, the average root mean
square error in the aggregate result, normalized
to the correct result value. This metric is a good
measure of the accuracy of the estimated value.

• Average energy per node per epoch, that is, the
total transmission, listening, and reception energy
consumed per node averaged over the number of
epochs. This metric reflects the overhead of each
scheme.

We implemented our RS schemes and the SD scheme
in CSIM [1] using the TAG simulator [18]. In the TAG
model [18], sensor readings are aggregated and sent
to the data sink every epoch. We present results for
COUNT query. It should be mentioned that we are
comparing against the best aggregate result for SD,
namely COUNT; other aggregates (e.g., SUM) have a
larger RMS in SD.

A. Simulation Setup

In our simulation analysis, a number of sensor nodes
are randomly distributed in a 300×300 ft area. The radio
range of each node is assumed to be 30 ft. The data sink
is the nearest node to the center. Each simulation run
has 100 epochs, 300 msec each, and the results shown
are the average of 10 runs. Based on the Mica2 motes
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power model [24], the power consumption is 65 mW for
transmission, 21.0 mW for listening and reception, and 0
mW in sleep mode. The network bandwidth is assumed
to be 38.4 Kbps [5]. The message size is different based
on the scheme used; for the spanning tree it is 2 bytes,
for RS it is 2 bytes + 2 bits × number of children, for the
SD-20 it is 12 bytes (20 bit vectors ×2 bytes each ×0.3
compression ratio) [6], and for SD-40 it is 24 bytes. We
use the same assumptions for link errors as that used
in the SD evaluation [21]: link errors are independent
and uncorrelated and links between track 1 and the data
sink are error-free. In our simulations we varied the link
error rate, the total number of sensor nodes, the number
of participating nodes in the query, and the maximum
number of parents per node.

B. Experimental Results

1) Accuracy Comparison: First, let’s consider the
case when the total number of nodes is 1000 and all
of them are participating in the query. Figure 4 shows
the relative RMS versus the link error rate. The error
bars represent 90% confidence intervals. As expected,
when the error rate increases the performance of the
spanning tree severely degrades. The RMS reaches 67%
for a link error rate of 35%. This is because the spanning
tree topology is not robust against errors, and if a packet
is lost, so is a complete subtree of values, increasing the
error in the final result.

SD, on the other hand, is robust to link losses. The
value of a node will be delivered as long as there exist
at least one error-free path from this node to the sink.
SD-20 achieves a relative RMS of about 12.5% at a link
error rate upto 10%, while SD-40 achieves 7.5%. At a
link error rate of 35%, the relative RMS increases to
only 18% for SD-20 and to only 12% for SD-40. (These
results match those in [19], [21].) However, it should be
noted that, there is always an error in SD even when the
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network is error-free. This error is associated with the
hash operation and is independent from the network.

On the other hand, RS does not suffer from this
drawback and achieves a better RMS than SD-20 for
link error rates up to 20% (practical wireless networks
have much lower link error rates [8]). Cascaded RS
achieves better relative RMS than diffused RS. This is
because some link errors are masked by cascaded RS,
while hurting diffused RS. For instance, consider an error
between the child and the last backup parent to send.
This error is masked in cascaded RS if another backup
parent has corrected the value before the last backup
parent. On the other hand, in diffused RS the virtual
share of the last parent will be lost, as all other backup
parents have already sent their values.

Next, we consider the experiment when only 20 nodes
(out of 1000) are participating in the query (Figure 5).
RS provides a stable performance and the RMS in the
aggregate result for this experiment is close to that
reported in Figure 4. On the other hand, SD has a very
serious drawback. The relative RMS of SD-20 jumps to
80% while for SD-40 it is more than 200%. This huge
error is much worse than that achieved when using a
non-fault tolerant spanning tree. This surprising result
can be justified as follows.

In SD-20, the minimum count that can be estimated
is when hash tables are all zeros. With 20 hash tables,
substituting in Equation 1 yields a minimum value of

20
0.77351 = 25.8. When 20 nodes hash their values, each
hash table will end up with one bit set to one, assuming
perfect distribution of the 20 nodes over the 20 hash
tables. If the 1-bit is in the least significant position of
each hash table, the estimated count is 21

0.77351 ×20 = 51,
or about 130% relative error. It may happen, however,
that a 0-bit is in the least significant position of some
hash tables, and thus, the position of the least significant
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zero is 0, resulting in lower estimation errors (the 80%
error in this experiment resulted from an average least-
significant 0-bit position of 0.5 yielding an estimate of

20.5

0.77351 ×20 = 36). With similar reasoning, we can show
why the RMS of SD-40 is approximately 200%.

To highlight this problem we fixed the link error
rate at 0.25 and changed the number of participating
nodes. As shown in Figure 6, when the number of
participating nodes is low the SD scheme delivers an
unacceptable error to the data sink. There is a tradeoff
in the design of SD, the number of hash tables has to be
large enough to improve the accuracy for queries with a
high number of participating nodes. Nevertheless, when
a query selects only a small number of nodes a large
number of hash tables causes a huge error. It should be
mentioned that, determining the number of participating
nodes beforehand is not a trivial problem because (1) it
is data dependent; for example, a node might send its
value only when a significant change occurs [23], and
(2) it is query dependent; for example, a query can be
dispatched and not all sensors satisfy its WHERE clause.
RS, on the other hand, does not need such dynamic
tuning and provides an acceptable RMS for any number
of participating nodes.

2) Overhead Comparison: In this experiment we
evaluate the energy consumed in communication for each
scheme. Figure 7 shows the average energy consumption
per sensor per epoch in the network, when 1000 sensors
participate in the query.

As expected and as shown in the figure, the spanning
tree consumes the least energy because each node is
transmitting to only one parent, and it has the smallest
message size (no added bit vectors). RS consumes ap-
proximately 50% of the energy consumed in SD-20 and
barely 25% of that consumed in SD-40. Although RS
uses the same number of parents as SD, it only adds a
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small bit vector (2 bits per child). SD, on the other hand,
consumes the highest energy overhead, as it uses a large
number of hash bit vectors and the resulting message
size is large even when compression/decompression is
applied at each node.

3) Effect of Network Density and Number of parents:
First, we consider the effect of the network density on
the performance of RS. As shown in Figure 8, we change
the total number of nodes deployed in the network. At
low density (total nodes = 300) the probability that a
node finds 3 parents decrease, and consequently, so does
the probability of error correction (because there are no
backup parents to mask link errors), as a result, the RMS
increases. As the network density increases the accuracy
of the RS scheme improves because more nodes can find
backup parents. It should be noted that, the effect of the
network density on RS is the almost the same as that
on SD. This is because any fault-tolerant scheme needs
some form of redundancy to be able to detect/correct
errors and similarly, SD needs multiple parents per node
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so that the hashed value of a sensor node is not lost when
an error occur.

We also evaluate the effect of changing the total num-
ber of parents on the performance of RS. As expected
and as shown in Figure 9 with a high link error rate
of 25%, as the number of parents per node increases
the accuracy of both RS and SD improves. However,
it is worth mentioning that RS benefits more than SD
from increasing the number of parents (RMS decreases
from 19.56% @ 3 parents to 11.98% @ 5 parents).
This is because increasing the number of parents in SD
decreases the error associated with the network, but on
the other hand, it has no effect on the error associated
with the hash operation and the RMS curve for SD
flattens as this is the maximum accuracy that can be
delivered using this scheme.

4) Optimizations Effect: The results presented up to
this point are for RideSharing with all the three enhance-
ments described in Section III-F. Next, we show the
effect of each individual optimization on the performance
of our proposed RS schemes. The link error rate is set
to 15% for this experiment, the total number of nodes
is set to 1000 and all of them are participating in the
query.

TABLE I

EFFECT OF OPTIMIZATIONS ON THE RELATIVE RMS

Optimization Diffused RS Cascaded RS

None 24.7976 26.5212
Ordering 13.7535 11.3264

Parent Clique 24.178 25.9831
Co-tracking 27.2981 29.0243

All 10.3167 7.14078

Table I shows the relative RMS of both cascaded
and diffused RS with no optimizations, when each

optimization is applied individually, and when all three
optimizations are applied. The transmission ordering
optimization has the highest improvement among the
others. The co-tracking optimization, by itself, has a
negative impact on the relative RMS. In co-tracking,
a child selects a sensor (with a higher id than itself)
from its own track as primary parent. This selection
enhances the probability of error correction when the
selected primary parent sends after the child. Without
the transmission order, however, the primary parent may
send before the child, resulting in losing the child’s value
because it is never aggregated. The probability that the
co-tracked primary parent sends before or after the co-
tracking child is the same. Hence, the benefit of co-
tracking and the loss of the child’s value cancel each
other. Moreover, the co-tracking increases the number
of hops the message travels and, hence, increases the
probability of error. As a result, co-tracking without the
ordering optimization delivers a higher RMS.

We note that when no optimization is applied, diffused
RS performs slightly better than cascaded RS in this
setting. This is because diffused RS is more robust to
arbitrary transmission order. This can also be shown
from the higher benefit of the ordering optimization
in the case of cascaded RS (from 24.79% to 13.75%)
compared to diffused RS (from 26.52% to 11.32% ).

V. CONCLUSION

In this paper we present and analyze two new fault
tolerant schemes for duplicate-sensitive aggregation in
sensor networks (1) Diffused RideSharing and (2) Cas-
caded RideSharing. These schemes make judicious use
of the available path redundancy in the network to deliver
a correct aggregate result to the data sink. Compared to
the state of the art, our new schemes deliver a lower
root mean square (RMS) error in the aggregate result, in
addition to consuming much less energy and bandwidth.
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