

Execution Model

Software

QR

Thread
Block

Grid

© NVIDIA Corporation 2009

Hardware

Thread
Processor

Multiprocessor

Device

>

NVIDIA.

Threads are executed by thread processors

Thread blocks are executed on multiprocessors
Thread blocks do not migrate
Several concurrent thread blocks can reside on

one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at
one time

Warps and Half Warps

32 Threads »
32 Threads
32 Threads

Thread

Block Warps Multiprocessor

G
Half Warps

Device
Memory

© NVIDIA Corporation 2009

>

NVIDIA.

A thread block consists of 32-
thread warps

A warp is executed physically in
parallel (SIMD) on a
multiprocessor

A half-warp of 16 threads can
coordinate global memory
accesses into a single
transaction

Memory Architecture <X

NVIDIA.

Device

GPU

DRAM :
Multiprocessor
Local Multiprocessor
Multiprocessor
G IO b a / Registers

Shared Memory

Constant and Texture
Caches

Constant

Texture

© NVIDIA Corporation 2009

Memory Architecture <X

NVIDIA.

Memory | Location | Cached | Access | Scope Lifetime

Register | On-chip N/A R/W One thread Thread
Welor:] Off-chip No R/W One thread Thread
Shared On-chip R/W All threads in a block | Block
Global Off-chip R/W All threads + host Application

Constant | Off-chip R All threads + host Application

Texture Off-chip R All threads + host Application

© NVIDIA Corporation 2009

Outline <X

NVIDIA.

® Overview
® Hardware

@® Memory Optimizations
@® Data transfers between host and device
® Device memory optimizations

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Host-Device Data Transfers <X
NVIDIA.

@® Device to host memory bandwidth much lower than
device to device bandwidth

® 8 GB/s peak (PCl-e x16 Gen 2) vs. 141 GB/s peak (GTX
280)

® Minimize transfers

® Intermediate data can be allocated, operated on, and
deallocated without ever copying them to host memory

® Group transfers
® One large transfer much better than many small ones

© NVIDIA Corporation 2009

Page-Locked Data Transfers <X

NVIDIA.

® cudaMallocHost () allows allocation of page-
locked (“pinned”) host memory

® Enables highest cudaMemcpy performance
® 3.2 GB/s on PCl-e x16 Gen1
® 5.2 GB/s on PCl-e x16 Gen2

® See the “bandwidthTest” CUDA SDK sample

® Use with caution!!

® Allocating too much page-locked memory can reduce
overall system performance

® Test your systems and apps to learn their limits

© NVIDIA Corporation 2009

Overlapping Data Transfers and <X
Computation

NVIDIA.

® Async and Stream APIs allow overlap of H2D or D2H
data transfers with computation

® CPU computation can overlap data transfers on all CUDA
capable devices

® Kernel computation can overlap data transfers on devices
with “Concurrent copy and execution” (roughly compute
capability >=1.1)

@® Stream = sequence of operations that execute in
order on GPU

® Operations from different streams can be interleaved

® Stream ID used as argument to async calls and kernel
launches

© NVIDIA Corporation 2009

Asynchronous Data Transfers <X
NVIDIA.

® Asynchronous host-device memory copy returns
control immediately to CPU
® cudaMemcpyAsync(dst, src, size, dir, stream);

® requires pinned host memory (allocated with
“cudaMallocHost”)

® Overlap CPU computation with data transfer
® 0 = default stream

cudaMemcpyAsync(a d, a h, size, A

cudaMemcpyHostToDevice, 0);
kernel<<<grid, block>>>(a d);
cpuFunction () ; <

.

overlapped

© NVIDIA Corporation 2009

Overlapping kernel and data transfer S,%A

® Requires:
® “Concurrent copy and execute”
® deviceOverlap field of a cudaDeviceProp variable
® Kernel and transfer use different, non-zero streams

® A CUDA call to stream-0 blocks until all previous calls
complete and cannot be overlapped

® Example:

cudaStreamCreate (&streaml) ;

cudaStreamCreate (&stream?) ;
cudaMemcpyAsync (dst, src, size, dir, streaml);
kernel<<<grid, block, 0, stream2>>>(..); <«

overlapped

© NVIDIA Corporation 2009

GPU/CPU Synchronization <X

NVIDIA.

@® Context based

@® cudaThreadSynchronize/()

® Bilocks until all previously issued CUDA calls from a
CPU thread complete

® Stream based

@® cudaStreamSynchronize (stream)

® Blocks until all CUDA calls issued to given stream
complete

® cudaStreamQuery (stream)
® Indicates whether stream is idle
® Returns cudaSuccess, cudaErrorNotReady,
® Does not block CPU thread

© NVIDIA Corporation 2009

GPU/CPU Synchronization <X

NVIDIA.

@® Stream based using events
® Events can be inserted into streams:
cudaEventRecord (event, stream)
® Eventis recorded then GPU reaches it in a stream
® Recorded = assigned a timestamp (GPU clocktick)
® Useful for timing

® cudaEventSynchronize (event)
® Blocks until given event is recorded

@® cudaEventQuery (event)
® Indicates whether event has recorded
® Returns cudaSuccess, cudaErrorNotReady,
® Does not block CPU thread

© NVIDIA Corporation 2009

Outline <X

NVIDIA.
® Overview

® Hardware

® Memory Optimizations
® Data transfers between host and device

@® Device memory optimizations
@® Measuring performance - effective bandwidth

® Coalescing
® Shared memory
® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Theoretical Bandwidth <X

NVIDIA.

® Device Bandwidth of GTX 280

DDR
v

® 1107*10"(3* (512/8) *2/1024*3 = 131.9 GB/s
Y

H_}

Memory Memory
clock (Hz) interface
(bytes)

® Specs report 141 GB/s
® Use 1079 B/GB conversion rather than 10243
® Whichever you use, be consistent

© NVIDIA Corporation 2009

Effective Bandwidth <X

NVIDIA.

® Effective Bandwidth (for copying array of N floats)

® N * 4 Bl/element / 102423 * 2 / (time in secs) = GB/s
“ y, 1 I
"
Array size Read and
(bytes) write

B/GB
(or 1079)

© NVIDIA Corporation 2009

Outline <X

NVIDIA.
® Overview

® Hardware

® Memory Optimizations
® Data transfers between host and device

@® Device memory optimizations
® Measuring performance - effective bandwidth

@® Coalescing
® Shared memory
® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

>

Coalescing AVIDIA

® Global memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two)
transaction(s) if certain access requirements are met

Depends on compute capability
® 1.0 and 1.1 have stricter access requirements

Examples — float (32-bit) data

Global Memory

} 64B aligned segment (16 floats)

_}1285 aligned segment (32 floats)

Half-warp of threads

© NVIDIA Corporation 2009

Coalescing <X
Compute capability 1.0 and 1.1

NVIDIA.

® K-th thread must access k-th word in the segment (or k-th word in 2
contiguous 128B segments for 128-bit words), not all threads need to

participate

Coalesces — 1 transaction

Out of sequence — 16 transactions Misaligned — 16 transactions

© NVIDIA Corporation 2009

Coalescing <N
Compute capability 1.2 and higher NVIDIA.

® Coalescing is achieved for any pattern of addresses that fits into a
segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for
32- and 64-bit words

® Smaller transactions may be issued to avoid wasted bandwidth due
to unused words

1 transaction - 64B segment

1 transaction - 128B segment

I

© NVIDIA Corporation 2009

Coalescing Examples <X
NVIDIA.

® Effective bandwidth of small kernels that copy data
® Effects of offset and stride on performance

® Two GPUs
® GTX 280

® Compute capability 1.3

® Peak bandwidth of 141 GB/s
® FX 5600

® Compute capability 1.0

® Peak bandwidth of 77 GB/s

© NVIDIA Corporation 2009

<A

V/

Coalescing Examples
NVIDIA.

__global void offsetCopy(float *odata, float* idata,
int offset)

{
int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;

odata[xid] = idata[xid];

}
Copy with Offset

|
| b4 '
rrvrvvrry vrvwewy ¥ GTX280
4 -4 FX5600
‘;
|

|
J

499999999 99aaad

)
@D
e
5
2
3
9
c
M
@
3
©
2
0

2 4 6 8 10 12 14 16
Offset

© NVIDIA Corporation 2009

Outline <X

NVIDIA.
® Overview

® Hardware

® Memory Optimizations
® Data Transfers between host and device

@® Device memory optimizations
® Measuring performance - effective bandwidth

® Coalescing
@® Shared memory
® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Shared Memory <X

NVIDIA.

® ~Hundred times faster than global memory

® Cache data to reduce global memory accesses
® Threads can cooperate via shared memory

® Use it to avoid non-coalesced access

® Stage loads and stores in shared memory to re-order non-
coalesceable addressing

© NVIDIA Corporation 2009

Maximize Use of Shared Memory rﬁ%h

® Shared memory is hundreds of times faster than global
memory

® Threads can cooperate via shared memory
® Not so via global memory

® A common way of scheduling some computation on the
device is to block it up to take advantage of shared memory:
® Partition the data set into data subsets that fit into shared
memory
® Handle each data subset with one thread block:
® Load the subset from global memory to shared memory
® syncthreads()
® Perform the computation on the subset from shared memory
— each thread can efficiently multi-pass over any data
® syncthreads() (if needed)
® Copy results from shared memory to global memory

© NVIDIA Corporation 2008

Example: <3
Square Matrix Multiplication

® C=A-Bofsize NxN
® Without blocking:

® One thread handles one element of C

@® A and B are loaded N times from global
memory

® Wastes bandwidth [

® Poor balance of
work to bandwidth

© NVIDIA Corporation 2008

Example: <3

NVIDIA

Square Matrix Multiplication Example

® C=A-Bofsize NxN B

® With blocking:

® One thread block handles one M x M
sub-matrix C_, of C

@ A and B are only loaded (N / M) times
from global memory

]z

® Much less
bandwidth

® Much better
balance of
work to bandwidth

© NVIDIA Corporation 2008

Shared Memory Architecture <X

NVIDIA.

® Many threads accessing memory
® Therefore, memory is divided into banks
® Successive 32-bit words assigned to successive banks

® Each bank can service one address per cycle

® A memory can service as many simultaneous
accesses as it has banks

® Multiple simultaneous accesses to a bank
result in a bank conflict
® Conflicting accesses are serialized

© NVIDIA Corporation 2009

Bank Addressing Examples

<3

NVIDIA.

® No Bank Conflicts

® Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

® No Bank Conflicts
® Random 1:1 Permutation

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

© NVIDIA Corporation 2009

Bank Addressing Examples <X

NVIDIA.

® 2.way Bank Conflicts ® 8-way Bank Conflicts

® Linear addressing ® Linear addressing
stride == stride ==

Thread 0 Thread O
Thread 1 Thread 1
Thread 2 Thread 2
Thread 3 Thread 3 ’

Thread 4 Thread 4 '\
Thread 5 \
Thread 6 »
Thread 7

Thread 8 x8
Thread 9
Thread 10
Thread 11 Thread 15

© NVIDIA Corporation 2009

Shared memory bank conflicts <X
NVIDIA.

® Shared memory is ~ as fast as registers if there are no bank
conflicts

® warp_serialize profiler signal reflects conflicts

® The fast case:

® If all threads of a half-warp access different banks, there is no
bank conflict

® If all threads of a half-warp read the identical address, there is no
bank conflict (broadcast)

® The slow case:

® Bank Conflict: multiple threads in the same half-warp access the
same bank

® Must serialize the accesses
® Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2009

Shared Memory Example: Transpose &>

NVIDIA.

® Each thread block works on a tile of the matrix

® Naive implementation exhibits strided access to
global memory

idata

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009

Coalescing through shared memory S,%A

® Access columns of a tile in shared memory to write
contiguous data to global memory

® Requires syncthreads () since threads access
data in shared memory stored by other threads

idata odata

tile
~
=

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009

Outline <3
NVIDIA.

® Overview

® Hardware

® Memory Optimizations

@® Execution Configuration Optimizations

® Instruction Optimizations

® Summary

© NVIDIA Corporation 2009

Occupancy <X

NVIDIA.

® Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

® Occupancy = Number of warps running concurrently
on a multiprocessor divided by maximum number of
warps that can run concurrently

® Limited by resource usage:
@® Registers
@® Shared memory

© NVIDIA Corporation 2009

Blocks per Grid Heuristics <3

NVIDIA.

@® # of blocks > # of multiprocessors
® So all multiprocessors have at least one block to execute

@® # of blocks / # of multiprocessors > 2
® Multiple blocks can run concurrently in a multiprocessor
® Blocks that aren’t waiting at a __syncthreads() keep the

hardware busy
® Subject to resource availability — registers, shared memory

@® # of blocks > 100 to scale to future devices
® Blocks executed in pipeline fashion
® 1000 blocks per grid will scale across multiple generations

© NVIDIA Corporation 2009

Register Dependency <X

NVIDIA.

® Read-after-write register dependency

® Instruction’s result can be read ~24 cycles later
® Scenarios: CUDA: PTX:

x=y+5; add.f32 $f3, $f1, $f2
z=Xx+3; add.f32 $f5, $f3, $f4

s_data[0] += 3; Id.shared.f32 $f3, [$r31+0]

add.f32 $3, $13, $f4
® To completely hide the latency:

® Run at least 192 threads (6 warps) per multiprocessor
® At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)

® Threads do not have to belong to the same thread block

© NVIDIA Corporation 2009

Register Pressure <3
NVIDIA.

@® Hide latency by using more threads per
multiprocessor

® Limiting Factors:
® Number of registers per kernel

® 8K/16K per multiprocessor, partitioned among concurrent
threads

® Amount of shared memory

® 16KB per multiprocessor, partitioned among concurrent
threadblocks

® Compile with -ptxas-options=-v flag
® Use -maxrregcount=N flag to NVCC

® N = desired maximum registers / kernel

® At some point “spilling” into local memory may occur
® Reduces performance — local memory is slow

© NVIDIA Corporation 2009

Optimizing threads per block <X

NVIDIA.

® Choose threads per block as a multiple of warp size
® Avoid wasting computation on under-populated warps
® Facilitates coalescing

® More threads per block != higher occupancy
® Granularity of allocation
® Eg. compute capability 1.1 (max 768 threads/multiprocessor)

® 512 threads/block => 66% occupancy
® 256 threads/block can have 100% occupancy

® Heuristics

® Minimum: 64 threads per block

@® Only if multiple concurrent blocks
® 192 or 256 threads a better choice

® Usually still enough regs to compile and invoke successfully
® This all depends on your computation, so experiment!

© NVIDIA Corporation 2009

