

Batcher Bitonic sorting algorithm

Basic concepts

- A sequence a_0 , ..., a_{n-1} is called Bitonic if there is an element a_i , 0 < i < n-1 such that one of the following is satisfied:
 - 1) $a_0 \le a_1 \le ... \le a_i \ge a_{i+1} \ge ... \ge a_{n-1}$ or
 - 2) $a_0 \ge a_1 \ge ... \ge a_i \ge a_{i+1} \le ... \le a_{n-1}$ or
 - 3) An index shift will satisfy any of the above two relations

Note: condition 2 is not needed. It can be obtained from 1 and 3.

Theorem: Given a bitonic sequence a_0 , ... , a_{2n-1} , let

$$x_i = min\{a_i, a_{i+n}\}$$
 for $i=0,...,n-1$

$$y_i = max\{a_i, a_{i+n}\}$$
 for $i=0,...,n-1$

Then each of x_0 , ..., x_{n-1} and y_0 , ..., y_{n-1} are Bitonic sequences and each element in the first sequence is smaller than any element in the second sequence.

Sorting a Bitonic sequence

• Given a n-element bitonic sequence, apply the theorem recursively

• After log n - 1 steps, each Bitonic sequence will have only two elements. Which can be trivially sorted.

Computation of execution time:

Log n steps,

Each step, i, requires i sub-steps. Hence

$$number_of_steps = \sum_{i=1}^{\log n} i = \frac{1 + \log n}{2} \log n$$

