814

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 7, JULY 1996

Distance-Constrained Scheduling
and Its Applications to Real-Time Systems

Ching-Chih Han, Member, IEEE, Kwei-Jay Lin, Member, IEEE Computer Society,
and Chao-Ju Hou, Member, IEEE

Abstract—In hard real-time systems, each task must not only be functionally correct but also meet its timing constraints. A common
approach to characterizing hard real-time tasks with repetitive requests is the periodic task model [1]. In the periodic task model,
every task needs to be executed once during each of its periods. The execution of a task in one period is independent of the
execution of the same task in another period. Hence, the executions of the same task in two consecutive periods may be right next
to each other, or at the far ends of the two periods. While the periodic task model can serve as a simple paradigm for scheduling
tasks with repetitive requests, it may not be suitable for all real-time applications. For example, in some real-time systems, the
temporat distance between the finishing times of any two consecutive executions of the same task must be less than or equal to a
given value. In other words, each execution of a task has a deadline relative to the finishing time of the previous execution of the
same task. Scheduling algorithms designed for the periodic task model may not provide efficient solutions for tasks with temporal

distance constraints.

In this paper, we propose the (preemptive) distance-constrained task system model which can serve as a more intuitive and
adequate scheduling model for “repetitive” task executions. We design an efficient scheduling scheme for the model, and derive a
schedulability condition for the scheduling scheme. The schedulability condition is a measure for providing the fundamental
predictability requirement in hard real-time applications. To show the usefulness of the distance-constrained task model and its
scheduling scheme, we also discuss how to apply the scheduling scheme to real-time sporadic task scheduling and to real-time

communications.

Index Terms—Distance-constrained task systems, (temporal) distance constraints, periodic task systems, pinwheel problem, real-

time scheduling/communication.

1 INTRODUCTION

IN hard real-time systems, each task must not only be
functionally correct but also meet its timing constraints.
For example, each task can only be invoked after its ready
time, and must be completed before its deadline. A common
approach to scheduling hard real-time tasks with repetitive
requests is the periodic task model [1], in which each task T;
has a period P; and an execution time e;. T; must be exe-
cuted once in each of its periods. Execution of the task in
any one period is scheduled independently of executions of
the same task in other periods. That is, each execution,
called a job request (or simply, a job), of a task has a fixed
ready time and a fixed deadline, which are the beginning
and the end of its period, respectively. Every job must start
its execution after its ready time and completes before its
deadline.

The periodic task model, however, does not suffice to
characterize the timing requirements of all real-time sys-
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tems. In some real-time systems, tasks must satisfy some
relative fiming relationships. For example, some real-time
tasks must be executed in a (temporal) distance-constrained
manner (2], [3], rather than just periodically. The temporal
distance between any two consecutive executions of a task
should not be longer than a certain amount of time. A real-
life example that requires relative timing constraints be-
tween two consecutive jobs is the oil change schedule for a
car. Suppose a car is to have its oil changed every six
months, i.e., an oil change must be done within six months
after the previous oil change. If the last oil change was done
in January, the next oil change should be done by July. How-
ever, if we use the periodic task model to schedule oil
changes with a (fixed) period of six months (starting from
January), it is acceptable to have one oil change done in Janu-
ary and the next in December, since there is one oil change in
each of the six month periods from January to June and from
July to December. Note that the actual temporal distance
between the two oil changes is 11 months, rather than six
months. In other words, in the schedule for the oil change
task obtained by an algorithm designed for the periodic task
model, there may be a temporal distance between two con-
secutive executions longer than the task period.

Many real-time applications have distance constraint re-
quirements, e.g., multimedia data transmissions [4], delay
and jitter control in ATM (Asynchronous Transfer Mode)
networks [5], [6], chemical process control, and air traffic
control [7], just to name a few. For example, the continuous
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or isochronous media data, such as CD audio or video, must
be displayed/replayed under relative timing constraints:
once sample k is played, sample k + 1 must be played no
later than a fixed interval (e.g., 125 us). Note that tasks in
these applications can be viewed as preemptive ones: the
transmission of media data, such as an MPEG [8] video
frame, can be preempted, but the entire frame must be
transmitted before a certain time (e.g., 1/30 sec.) after the
previous frame has been transmitted. In an ATM network,
each message is divided into basic transmission entities,
called cells, and the transmission of a message can be pre-
empted after the transmission of a cell. The end-to-end de-
lays and the end-to-end delay jitters (i.e., the variances of
the delays) of messages in a message stream must be less
than or equal to some user-specified values. In other words,
jitter control regulates the message arrival spacings at the
destination node. In a chemical process control system, one
ingredient must be added into a container within a certain
time after another has been put in. When one schedules a
moving cart to ship the ingredients, it is important to have
the cart come in some regular interval so that all necessary
ingredients are added in at the right time. In monitoring
aircraft, one also needs to monitor aircraft in a regular in-
terval rather than in some random pattern as in executing
periodic tasks.

These types of timing constraints, which we call temporal
distance constraints [2], [3], require an acceptable temporal
distance between the times that two consecutive job re-
quests of a task are executed. In other words, a job request
of a task has a relative deadline depending on when its
predecessor was actually executed. In fact, when a system
requirement of having a certain task performed once in
every P seconds, it is usually referred to having the maxi-
mum temporal distance between two consecutive task exe-
cutions be less than or equal to P. The schedule obtained by
using the periodic task model with a period P may not nec-
essarily satisfy the above criterion. We, thus, propose a real-
time task model, termed as the Distance-Constrained Task
System (DCTS), to remedy the deficiency of the periodic
task model. We also devise an efficient scheduling algo-
rithm for DCTS with preemptive tasks, and derive a schedu-
lability condition for the algorithm. The case with nonpre-
emptive tasks has been studied in [2], [3].

In this paper, we first define the distance-constrained
task system model which can serve as a more intuitive and
adequate scheduling model for “repetitive” task executions.
Using techniques developed for the pinwheel problem [9],
[10], we then devise a DC scheduling scheme which effi-
ciently schedules distance-constrained task sets. We also
derive a schedulability condition (density threshold) for the
scheduling scheme. The density threshold serves as a
measure for providing the fundamental predictability re-
quirement in hard real-time applications, i.e., the schedula-
bility of a task set can be checked by comparing the total
density' of the task set with the density threshold. The de-
rived density threshold turns out to be exactly the same as
the utilization bound for scheduling periodic tasks using
the well-known rate-monotonic algorithm [1]. Finally, to

1. To be defined later.
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show the usefulness of the proposed DC scheduling
scheme, we discuss how to apply it to a real-time schedul-
ing and a real-time communication problems.

The rest of the paper is organized as follows. In Section 2,
we formally define the DC scheduling problem, and briefly
summarize the related work, namely, the periodic task
system, the rate-monotonic scheduling algorithm, and the
pinwheel problem. In Section 3, we discuss how to use the
algorithms designed for periodic task systems and for the
pinwhee] problem to schedule DC task sets. In Section 4, we
present the main results. In particular, we propose a fixed-
priority DC scheduling algorithm for DC task sets and de-
rive its schedulability condition. In Section 5, we discuss
how to apply the proposed scheme to the sporadic task
scheduling problem and to a real-time communication
problem. The paper concludes with Section 6.

2 DC ScHEDULING PROBLEM AND RELATED WORK

In this section, we first formally define the distance-
constrained task system (DCTS) model and the DC sched-
uling problem. Then, we briefly describe two closely related
scheduling problems: the periodic task scheduling problem
[1], [11] and the pinwheel problem [9], [10]. The scheduling
algorithms originally designed for periodic task systems
and for the pinwheel problem will be integrated to sched-
ule distance-constrained task systems in Section 4.

2.1 DC Scheduling Problem

Formally, a distance-constrained task system (DCTS) con-
sists of a set of n distance-constrained (DC) tasks T = {T, T,,
..., T,}. Each task must be executed (virtually) an infinite
number of times. Each execution of a task is called a job,
and the jobs of T are denoted as J;;, [, Ji3, ---- Task T; has an
execution time ¢; and a (temporal) distance constraint ¢;. The
distance between two (consecutive) jobs of a task is defined
to be the difference of the finishing times of these two jobs.
That is, if f; denotes the finishing time of job [, for 1 €i<n
and j 2 1, the distance between J; and J, ,; is defined to be
fijn — fi The distance constraint ¢; imposes that f; < ¢; and
fim1 —fSc; foralljz 1. In addition, we assume that there is
a precedence constraint between two consecutive jobs, i.e.,
job J; iy can be started only after job J; has been finished,
and that each job is ready to be executed as soon as its
predecessor job is finished. Hence, job J;; has a ready time
#a = 0 and a deadline d;y = ¢, and job J;, for j > 1, has a ready
time 7; = f;,; and a deadline d; = f,; ; + ¢, Moreover, we
assume that jobs are preemptable, i.e., the execution of a job
can be suspended at any time and resumed at a later time.

A scheduling algorithm which produces a schedule for a
set of tasks in which each job ] starts its execution after its
ready time r; and completes before its deadline d;; is said to
feasibly schedule the task set, and the schedule produced is
said to be feasible.

A scheduling algorithm is said to be optimal for a par-
ticular scheduling scheme, if for any task set that can be
feasibly scheduled by any other algorithm of the same
scheme, it can also be feasibly scheduled by the algorithm.
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2.2 Periodic Task Scheduling Problem

The problem of scheduling real-time perjodic task systems
has been extensively studied [1], [11], [12], [13], [14], [15].
Similar to the definition of DCTS, a real-time periodic task
system consists of a set of n periodic tasks T ={T}, Ty, ..., T,,}.
Each task T; must be executed once every P; time units,
where P; is called the period of T;. Each execution of a peri-
odic task is called a job, and each task T, has an execution
time e;. The jth job J; of task T is ready for execution at time
(G —1) - P, and must be completed by the starting time j - P; of
the next job period of the same task, i.e., the ready (or request)
time and the deadline of J; are r;= (j~1) - P;and d; = j - P, re-
spectively. Note that the only difference between a periodic
task and a DC task is that each job Ji; of a periodic task T,
has a fixed ready time (j — 1) - P; and a fixed deadlinej - P,
while each job J; of a DC task T has a ready time fijmand a
deadline f;;; + ¢;, where f;;; is the finishing time of the
predecessor job, J;; 4, of J; ie., the ready time and the
deadline of J; are relative to the finishing time of Jij—1-

A commonly-used on-line scheduling scheme for real-
time periodic task systems is the priority-driven preemptive
scheduling scheme. In priority-driven scheduling, each task
is given a (fixed or dynamic) priority. At run-time, the sys-
tem always chooses among the active jobs the one with the
highest priority to execute next, where an active job is one
whose execution has been requested but not yet finished. If
each task is given a fixed priority for all of its executions
(jobs), the scheduling scheme is said to be fixed or static pri-
ority-driven. On the other hand, if the priority of a task
changes from one execution to another (i.e., each job of the
task has its own distinct priority), the scheduling scheme is
said to be dynamic priority-driven.

Liu and Layland [1] showed that the rate-monotonic (RM)
algorithm is optimal for fixed priority-driven scheduling
schemes, and the deadline-driven algorithm, or termed else-
where the earliest-deadline-first (EDF) algorithm, is optimal
for dynamic priority-driven scheduling schemes. The RM
algorithm assigns priorities to tasks according to their peri-
ods. Tasks with shorter periods get higher priorities. Since
the periods of tasks are fixed, their priorities are also fixed.
The EDF algorithm assigns priorities to tasks according to
the deadlines of the current job requests. The earlier a job’s
deadline is, the higher its priority is. Therefore, the priority
of a task changes with time. We may also say that the EDF
algorithm assigns a fixed priority to each job, instead of to
each task. Jobs with earlier deadlines get higher priorities.

Liu and Layland further defined e,/P; as the processor
utilization of task T, and showed that

1) a task set can be feasibly scheduled by the EDF algo-
rithm if and only if the total utilization factor

up = 3ep
i=1

is less than or equal to one, and

2) the least upper bound for a task set to be feasibly
scheduled by the RM algorithm is K(n) = n@"" — 1),
ie., if
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Uy = D e,/P < K(m) = n2"" -1)
i=1
then the task set is guaranteed to be schedulable by
the RM algorithm. Note, however, that if the utiliza-
tion factor Uy is larger than K(n), it is not known
whether or not the task set T can be feasibly sched-
uled by the RM algorithm.

2.3 Pinwheel Problem

Another scheduling problem closely related to our DC sched-
uling problem is the pinwheel problem defined below [9], [10].

PROBLEM 1. (The Pinwheel Problem) Given a multiset of n
positive integers A = {a,, 4,, ..., 4,}, find an infinite se-
quence (schedule) over the symbols {1, 2, ..., n} such
that there is at least one symbol “i” within any subse-
quence of g, consecutive symbols (slots).

For example, given a multiset A = {2, 4, 5}, one solution se-
quence is (1, 2, 1, 3,1, 2, 1, 3, ---) where the subsequence
(1,2, 1, 3) repeats forever. In this solution sequence, we can
find one “1” in every a4, = 2 consecutive symbols, one “2” in
every 4, = 4 consecutive symbols, and (at least) one “3” in
every a; = 5 consecutive symbols. Also note that any two
consecutive occurrences of symbol “i” have a temporal
distance less than or equal to 4;, fori=1,2, and 3.

The pinwheel problem is motivated by the satellite
communication with a single ground station. The ground
station receives messages transmitted from several satel-
lites. During each time slot, the ground station can only
receive messages from at most one satellite. Each satellite ¢
is associated with a transmission repetition interval a4, Sat-
ellite i transmits the same message for 4; consecutive time
slots, and then transmits another message for the next g;
consecutive time slots. This pattern repeats (virtually) for-
ever. In order not to miss any message transmitted from the
satellites, the ground station must schedule to receive the
messages from satellite i at least once in any 4; consecutive
time slots.

The pinwheel problem can be viewed as a special case of
the discrete version of the distance-constrained scheduling
problem since the pinwheel requirement that “there is at
least one symbol ‘i’ within any subsequence of 4; consecu-
tive symbols” is equivalent to the distance constraint that
“the temporal distance between two consecutive occur-
rences of symbol ‘i’ must be less than or equal to 4,” A DC
scheduling problem instance {T; = (¢, ¢,) | 1 < i < #} with all
execution times ¢; = 1 and all distance constraints ¢; being
integers is exactly the same as the pinwheel problem in-
stance {a;=¢;| 1 <i<n}.

In the DC scheduling problem, e;/c; is only the lower
bound of the processor utilization of task T, and hence, we
will follow the terminology used in the pinwheel problem
and call p(T) = e;/c; the density of task T;. The total density of
task set T is thus defined to be

mn:imm=i%.

Chan and Chin [10], [16] have devised several algo-
rithms for scheduling pinwheel instances, including Sched-



HAN ET AL.: DISTANCE-CONSTRAINED SCHEDULING AND ITS APPLICATIONS TO REAL-TIME SYSTEMS 817

ulers Sa, Sx, Sbe, Sby, and Sxy. Their density thresholds
(schedulability conditions) for guaranteeing a feasible
schedule for a pinwheel problem instance have also been
derived, to be 1/2, 13/20, 2/3, 0.6964, and 0.7, for Sa, Sx,
Sbc, Sby, and Sxy, respectively. In Sections 3 and 4, we
show how to use or modify these scheduling algorithms to
schedule DC task sets.

3 APPLYING KNOWN SCHEDULING ALGORITHMS
T0 DCTS

In this section, we show why the previously-known sched-
uling algorithms for the periodic task systems and for the
pinwheel problem, though they can be straightforward ap-
plied to scheduling DC task sets, are not good solutions to
the DC scheduling problem.

If a job is allowed to be arbitrarily preempted, a distance-
constrained task system can be easily scheduled (as long as

2;%— <1) using the following method: We first divide

every task T; into two parts T/ and T.”. The first part T has
an execution time e; — £and the second part T” has an exe-
cution time & We can choose € > 0 to be arbitrarily small,
and schedule Ji7 (the jth job of T") at time j - ¢; - ¢ for all i
and j (see Fig. 1). We then treat the rest of the tasks T/s as a
periodic task system. Each task 1 has an execution time

e; — £ and a period P; = ¢;. In this way, we can feasibly
schedule all these tasks using the EDF algorithm as long as

z; e’: <1-¢&, where ¢is a small number depending on

£ Moreover, the distance constraints are all satisfied. In
other words, if arbitrary preemption is allowed, a distance-
constrained task set can be trivially scheduled by the EDF
algorithm. However, in most, if not all, real-time applica-
tions, this kind of “arbitrary” preemption is meaningless, or
even infeasible. Therefore, we will henceforth exclude this
kind of arbitrary preemption and consider only “reasonable”
preemptive scheduling schemes.

o
T ' T T V" H HJ "3
— ] f— o
e=0

Fig. 1. Scheduling distance-constrained tasks that allow arbitrary
preemption.

The other scheduling algorithms designed for periodic
task systems can also be used to schedule distance-
constrained task systems. Recall that in the periodic task
system, a task must be executed once in each of its periods.
Two consecutive job executions of a task hence have an
average distance equal to the period of the task. However,
as discussed earlier, there is no guarantee on when the two
consecutive jobs of a periodic task are actually executed.
Consider Fig. 2 for example: Given a periodic task T; with a
period P; and an execution time e, the actual executions
(finishing times) of two consecutive jobs J; and J;;,; of the
task can be as close as e, and as far as 2P; — ¢;. This is be-

cause the latest finishing time of a job is the end of its pe-
riod (i.e., the starting time of the next job period of the same
task) and the earliest finishing time of its successor job is
the starting time of the next job period plus the execution
time of the task. Similarly, the earliest finishing time of a job
is the starting time of its period plus the execution time of
the task and the latest finishing time of its successor job is
the end of the next job period. If we treat a DC task set as a
periodic task set and use the EDF algorithm to schedule the
set, the period P; of task T; must be set to a value that satis-
fies the following condition:

1:1‘ < (Ci + ei)/Z

in order to guarantee that a task T; always meets its dis-
tance constraint ¢;. That is, if we set (c; + ¢,)/2 as the period

P; of task T, for all i, in the distance-constrained task system
and treat the system as a periodic task system, then we can
schedule the system using the EDF algorithm to satisfy the

distance constraints as long as Zi] e /P = Zn %<,

i=1¢te; T

This result immediately gives the 0.5 density threshold de-
rived in [9], [10], i.e., all instances of the pinwheel problem
with a total density no more than 0.5 can always be feasibly
scheduled. The major drawback of this approach is that in
the resulting schedule, the tasks will be executed too often,
leading to a waste of system resources.

Jii Jijs1

}‘ 2P, —¢; _,‘

Fig. 2. Longest distance between two consecutive jobs of a periodic
task.

Since the pinwheel problem can be viewed as a special
case of the DC scheduling problem, the schedulers de-
signed for the pinwheel problem, e.g., Sa, Sx, Sbc, Sby, and
Sxy, can also be used to schedule DC task sets. Before using
these schedulers, we first need to transform a DCTS in-
stance into a pinwheel instance. The transformation can be

done as follows. Each task T; is transformed into an ele-

ment, a;, in the pinwheel instance, where 4; = Le,/Te; L. Every
[e;] consecutive time slots allocated to the ith symbol of the
pinwheel instance are actually allocated to one job request
of task T; In this way, we can use the algorithms designed
for the pinwheel problem to solve the DCTS problem. Note
that the distance constraints are satisfied since [ ¢;]- a2, =[¢;]-
Le./ |—ei—U < ¢;. For example, if task T; has an execution time
¢; = 3.2 and a distance constraint ¢; = 9.5, its corresponding
pinwheel instance a; is |9.5/[3.21] = 2. Suppose we can find
for the transformed pinwheel instance a feasible schedule in
which two consecutive slots allocated to the ith symbol of
the pinwheel instance have a distance less than or equal to
2. 1f we group every [ 3.2 = 4 consecutive slots allocated to
the ith symbol and treat them as the slots allocated to each
job of task T; (Fig. 3), then the distance between two con-
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secutive jobs of task T; will be less than or equal to 4 -2 =8,
i.e., the distance constraint ¢; = 9.5 of task T; is satisfied. As
mentioned earlier, the best known density threshold for
scheduling pinwheel instances is 0.7 (Scheduler Sxy) [16].
Hence, as long as 2; 1/(Lci/|'ei—u) < 0.7, the DC task set is

guaranteed to be schedulable. The major drawback of this
approach is that it is not efficient in terms of density
threshold (note the ceiling and floor functions in the

schedulability condition Zi:ll/ (Lci / [ei”) €07) and in
terms of implementation (note that there may be [¢;] pre-

emptions for each task T)).

<2

L el [

7

Holoi

J, i.j+1

Fig. 8. A schedule for task T; with e;= 3.2 and ¢;= 9.5.

With a careful analysis, we extend Scheduler Sx into a
new scheduling algorithm for scheduling DC task sets. The
proposed algorithm has a better schedulability condition,
and can be implemented as easily as the RM algorithm for
the periodic task systems (since the proposed algorithm is
based on the RM algorithm). We present the algorithm and
its associated results in the next section.

4 DISTANCE-CONSTRAINED SCHEDULING
ALGORITHM BASED ON SX
In this section, we first briefly describe Scheduler Sx based

on which we design our scheduling algorithm, Scheduler
Sr, for DC task sets. We then elaborate on the design of Sr.

4.1 Scheduler Sx

Let A = {ay, g, ..., a,} be an instance of the pinwheel prob-
lem. Without loss of generality, we assume in the following
discussion that a; € a, £ --- < a,. In [9], [17], it has been
proved that if a pinwhee] instance A with a total density <1
consists solely of multiples (i.e., p(A) = Z:; 1/a; <1,and a; | a;

for all i < j, where x | y denotes x divides y), then A is
schedulable. For example, {2, 4, 8, 8} is schedulable. Based
on this result, Scheduler Sx first transforms an arbitrary

instance A to another instance B = {b,, b,, ..., b,} which con-
sists solely of multiples and b; < g, for all i. (The detailed
operation of the transformation will be discussed later in
this section.) Since b; < a; for all i, the transformed multiset
B = {b;, by, ..., b,} is more restricted than the original pinwheel

instance A. If we can find a pinwheel schedule for B, in which
two consecutive occurrences of symbol “i” are scheduled with

a distance less than or equal to b, the schedule also satisfies the
original constraint a;. Also, since the instance B consists solely

of multiples (i.e., if i < j then b;| by, B can be feasibly scheduled
if and only if p(B) <1, as mentioned earlier.
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Since b; < 4, for all 7, we have p(B) = p(A). If the total den-
sity of A is larger than 1, it is impossible to find a feasible
schedule for A, i.e., the total density less than or equal to 1
is a necessary condition for a pinwheel instance to be
schedulable. The density threshold p is then derived in such
a way that as long as the total density of A is less than or
equal to p* then p(B) < 1 (i.e., B is schedulable). In other
words, with the transformation of the problem instance,
one can schedule all pinwheel instances with total density <
p*. Note, however, that if a pinwheel instance A has a total
density greater than p, it does not necessarily imply that
the instance is not schedulable by the above method. A can
be feasibly scheduled as long as the total density of the
transformed multiset B is less than or equal to 1.

The operation used to transform an arbitrary pinwheel
instance to one which consists solely of multiples is de-
scribed as follows. Given an integer 4, find a b; for each 4;
that satisfies

b=a-2<a<a- 27 =2p,

for some integer j 2 0, i.e., b, =a- ZLIOg(”i/ o] (note that all
logarithms in this paper are to the base 2). This operation is
called specializing A with respect to {a} in [10]. Note that the
specialization operation can be done in O(r) time assuming

can be
computed in constant time. Fig. 4 illustrates the rationale
behind the specialization operation. As shown in Fig. 4, all
numbers in the pinwheel instance that fall in the range

that, given a number 4, the value b, = a- ZUOg(Q"/ »)]

[a-2),a-2") are specialized (transformed) to a - 2/, for j > 0.

by—bs by—b; bs—bjo
0 a 2a 4a
| | |
!L 1 | L1 I 1 1
@ ay ay ag as as aq ds as  ayp

Fig. 4. lllustration of the rationale behind the specialization operation.

Scheduler Sx works as follows [10]. Sx first tries to find
an integer x, a,/2 < x < a;, and specializes A with respect to
{x} to get the specialized multiset B. Starting from x = a,
down to x = a4;/2 + 1, Sx specializes A with respect to {x}
and chooses an x that minimizes p(B), or chooses the first x
which makes p(B) < 1 (or it finds that no such integer ex-
ists). If the total density of B is less than or equal to 1, Sx
then uses the scheduling algorithm SpecialSingle [10] to
find a feasible schedule for B. Since b; < g; for all i, the
schedule found for B is also a feasible schedule for A. For
notational convenience, we use Sx to refer to either the
scheduler (the combination of the specialization operation
and the scheduling algorithm) or just the specialization op-
eration itself. For example, if A = {4, 6, 7, 13, 24, 28, 33} is
specialized with respect to {4}, the specialized multiset is
B =1{4,4,4,8,16, 16, 32} with a total density of 33/32 > 1, and
if A is specialized with respect to {3}, the specialized multiset
is B =1{3,6,6,12,24, 24, 24} with a total density of 7/8. There-
fore, Sx will choose x = 3 and get B =13, 6, 6, 12, 24, 24, 24}.

It is shown in [10] that the density threshold for Sched-
uler Sx is 13/20. That is, as long as the total density of A is
less than or equal to 13/20, the total density of the special-
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ized multiset B will be less than or equal to 1, implying that
B and also the original multiset A are schedulable.

By extending Sx, we design an efficient algorithm Sr to
schedule general DC task sets. Specifically, let T = {T}, T,
..., T,} be a DC task set in which T; has an execution time ¢;
and a distance constraint ¢; for 1 < i < n. (Without loss of
generality, we assume ¢; < ¢, < .-+ £ ¢,.) We will devise a
polynomial time algorithm which can find a real number 7,
€1/2 < v < ¢, for a given DC task set T, so that T has a
minimum density increase when its distance constraint
multiset C = {¢;, ¢,, ..., ¢,} is specialized with respect to {r} to
get B = {b;, by, ..., b} (note that b; | b; for all i < j). We can
then use B, instead of C, as the distance constraint multiset
of T. In what follows, we first propose in Section 4.2 a
scheduling algorithm, called distance constraint-monotonic
(DCM) algorithm, which finds a feasible schedule for a DC
task set whose distance constraint multiset consists solely of
multiples and whose total density is less than or equal to 1. We
then elaborate on the specialization operation in Section 4.3.

4.2 The DCM Algorithm

As mentioned in Section 2.2, there are two types of priority-
driven preemptive scheduling schemes commonly used for
scheduling traditional periodic task systems: the fixed-
priority scheme and the dynamic-priority scheme. The pro-
posed DCM algorithm is a fixed-priority preemptive
scheduling scheme for scheduling DC task sets.

Similar to the RM algorithm, the DCM algorithm assigns
priorities to tasks before run time in such a way that tasks
with smaller distance constraints get higher priorities (ties
are broken arbitrarily). At run-time, the system always exe-
cutes the task with the highest priority among all active
tasks. Since every job is ready to be executed as soon as its
predecessor job is finished, if we do not add additional con-
straints, we may end up executing the highest-priority task
over and over again but no others. In order for other lower-
priority jobs to be executed, we need to artificially delay the
execution of a higher-priority job. To this end, in addition
to assigning a fixed priority to each task T;, we also assign a
(fixed) separation constraint [18], s, to each task T;. The sepa-
ration constraint s; requires that any two consecutive jobs of
task T, be separated by at least s;. Formally, if job J;; , is fin-
ished at time f;;_; then the next job J; cannot start its execu-
tion before time 7;; = f;; ; + 5;. That is, s; can be viewed as a
relative ready time for each job of T;. The ready time of a job
is relative to the finishing time of the predecessor job of the
same task, not to time 0. As shown in Fig. 5, the feasible
execution interval for a distance-constrained job J; is [f;;; +s;
fiz + ¢, where f;; ; is the finishing time of J;; , and is not
defined until run-time. (In contrast, the feasible execution
interval for a periodic job J; is [(j = 1) - P;, j - P;], which is
known before run-time.)

\ &

Fig. 5. The feasible execution interval [r;, dj] of Jj

In Theorem 1, we show that, if ¢; | G for all i < j, the DCM
algorithm can guarantee to find a feasible schedule for a
task set with a total density less than or equal to 1 by setting
s; = ¢; — f1, where f;, is the finishing time of the first job of T
Note that we assume that the first job J; of T, 1 <i < n, is
ready at time 0 and must be finished by time ¢;. In sum-
mary, the DCM algorithm is a priority-driven preemptive
scheduling algorithm with the distance constraint-
monotonic priority assignment and the above separation
constraint assignment (s; = ¢;— f, for 1 <i<n).

THEOREM 1. For a DC task set T, if ¢; | ¢; for all i < jand pf(T) <1,
and if the separation constraint s; = c; — f, is imposed on
each task T, 1 <i<n, the task set can be feasibly scheduled
using the distance constraint-monotonic (DCM) priority
assignment.

PROOF. Similar to the proofs in [10] and [9], we need to
show that

1) J, is finished before time ¢, i.e., f; < ¢, for all i, and

2) for any task T; if it is running at time ¢, then it is
also running at time ¢ + g - ¢; for any integer g such
thatt+4q-¢;20.

We prove 1) and 2) by induction on task id i. For task
T,, since it is the highest-priority task, its first job J;,
will be running without preemption from time 0 to
time e;. Hence, f;; = e; < ¢; and 1) is satisfied for T,
(note that if ¢, > ¢; then the total density will be
greater than 1, i.e., o(T) > 1). Moreover, its separation
constraint s, is set to ¢; — ;. This separation constraint
will make all later jobs of T, to be executed from time
g-(e;+s)=q-c totimeq-c; + e, forall g 2 1. There-
fore, 2) is satisfied for task T;. Also notice that the
distance constraints between J;; and ] ;,,, for j 2 1, are
all satistied, i.e., f;;.) — f=c;
Now, suppose 1) and 2) hold for all i < k. Let S;; be the
starting time of J;;. It is easy to see that f;;.; — f; = S —
S;=c,foralll1<i<kandallj=1.Since
i) ¢ g, foralll1<i<k,
ii) fy < ¢;, for all 1 < i <k, by the induction hypothesis
of 1), and
iii)fi,jﬂ ”fi/ =S5~ Sij =Cy
we know that the amount of processor time allocated
to T, for 1 <i <k, from time 0 to time ¢, is exactly e, i—“

If 1) is not true for T,, we have

k-1 c k ¢
Zei—c_—-i-ek = zei-c_,> Crs
i=1 ! i=1 !

or
k e,
Yot
C:
i=1 !

a contradiction to the assumption that the total den-
sity of the task set is less than or equal to 1.

Now, since J,, is finished at time f;; < ¢, its separation
constraint s, is set to ¢, — f;, which means that its succes-
sor job J, is ready at time c,. Because ¢; | ¢, for 1 <i <k,
by the induction hypothesis of 2), the execution pat-



820

tern of tasks T}, T,, ..., Ty_; in the time interval [0, ¢]
repeats in the time intervals [ —1) - ¢;, j - ¢, forall j > 1.
Using the separation constraint assignment, it is easy
to see that the execution pattern of task T also repeats
in each of the time intervals [(j — 1) - ¢, j - ¢;], forj = 1.
Note that the lower-priority tasks Ty, Tio - T,
have no effect on the execution pattern of the higher-
priority tasks Ty, To, ..., T} Hence, 2) is true for T,.

From 1) and 2), we conclude that the schedule pro-
duced by the DCM algorithm, i.e., by the distance
constraint-monotonic priority assignment and the
separation constraint assignment defined in the theo-
rem, is always feasible, i.e., each task T; meets its dis-
tance constraint (fy <¢;and f;,;, — f; < ¢, forallj=1). O

ExampLE 1. Consider a set of distance-constrained tasks T =
{T;=(,c)]i=1,2,3) ={(05,3), (1, 6), (2.5, 12)}. The
subschedule from time 0 to 12 produced by the DCM
algorithm is shown in Fig. 6. The subschedule from
time g - 12 to (g + 1) - 12, for g = 1, is exactly the same
as that from time 0 to 12. Note that f; < ¢; and fijr = f
=¢,fori=1,2,3,andj21.

73] ) A
TZL [ 7

T3

‘A T ! |ﬁr~7ﬂA—’

Fig. 8. The schedule produced by the DCM algorithm for the set of
distance-constrained tasks in Example 1.

Note that if ¢; | o for all i < j, the schedule produced by
the DCM algorithm is exactly the same as the one produced
by the RM algorithm for the periodic task scheduling
problem with task set T = {T; = (¢;, ¢) | 1 <i < n}, where ¢, is
the period of T;. It is also worth mentioning that for a peri-
odic task set whose period set consists solely of multiples,
the schedule produced by the RM algorithm is exactly the
same as that produced by the EDF algorithm. Moreover, as
mentioned in Section 2.2, a periodic task set can be feasibly
scheduled by the EDF algorithm if and only if its total utili-
zation factor is less than or equal to 1. This gives another
intuition of the correctness of the above theorem.

Liu and Layland [1] have shown that for periodic task
systems, the largest response time (i.e., the largest difference
between the request time and the finishing time of a job) for a
task occurs when a job of the task is requested at the same
time as the jobs of all higher-priority tasks. For the periodic
task system in which the first jobs of all tasks are ready at
time 0, the first job J; of task T} has the largest response time
among all jobs of T;. The rationale behind the separation con-
straint assignment s; = ¢; - f; is that if the first job [, of a dis-
tance-constrained task T, has the largest response time
among all jobs of T, then setting the separation constraint s,
to ¢; — f4 can guarantee that all jobs of T; meet their deadlines
as long as the first job J;; meets its deadline ¢, i.e., f; < ¢)).
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Although the above statement is true if the distance con-
straint multiset C consists solely of multiples, it is not true
for general DC task sets. Therefore, for a general DC task
set, if we do not perform the specialization operation before
we schedule the task set (by the DCM algorithm), no den-
sity threshold exists. For example, the task set with {T; = (¢, c,)
[1<i<6}=1{(6,59), (1, 87), 4, 167), (3,204), (1, 422), (136, 4222)}
cannot be feasibly scheduled by the DCM algorithm with-
out performing the specialization operation first, and its
total density is only about 0.1864. If we first specialize the
task set (the distance constraint multiset) with respect to
{59}, we get the specialized task set {(6, 59), (1, 59), (4, 118),
(3, 118), (1, 236), (136, 3776)}, with a density 0.2182. We can
then feasibly schedule the specialized task set with the
DCM algorithm. Moreover, the feasible schedule found for
the specialized task set is also a feasible schedule for the
original task set, because the distance constraint of each
task in the original task set is looser than the corresponding
distance constraint in the specialized task set. This example
shows that performing the specialization operation before
applying the DCM algorithm to a DC task set will, in gen-
eral, result in a better performance. We will show in Section 4.4
that the density threshold for scheduling a DC task set using
the specialization operation Sr discussed in Section 4.3 and
the DCM algorithm is exactly the same as the utilization
bound for scheduling periodic tasks using the RM algorithm.

4.3 Specialization Operation Sr
As discussed earlier, for a general DC task set, we can first
specialize the task set T (the distance constraint multiset C)
with respect to a number (not necessarily an integer) and
then find a feasible schedule for the specialized task set
using the DCM algorithm as long as the total density of the
specialized task set is less than or equal to 1. In this section,
we discuss in details the specialization operation St that we
use to specialize a general DC task set. Again, for notational
convenience, we use Sr to refer to either the scheduler (the
combination of the specialization operation and the DCM
scheduling algorithm) or just the specialization operation
itself.

Sris a generalization of Sx. Sx specializes A with respect
to {x}, where x is an integer chosen from the range (2,/2, 4]
so that the specialized task set has a minimum density in-
crease (note that the density of the specialized task set is
always larger than or equal to that of the original task set).
Similarly, Sr specializes C with respect to {r}, where r is a
real number chosen from the range (c,/2, ¢;] so that the spe-
cialized task set has a minimum density increase. By gener-
alizing the results in [10], we next present a polynomial
time algorithm to find an r that minimizes the density in-
crease. The specialization operation Sr uses this algorithm
to find the best r and then specializes the distance con-
straint multiset C with respect to {r}.

The algorithm works as follows. Let T be a DC task set

with distance constraint multiset C = {¢;, ¢,, ..., ¢,}, where
€156, ¢, Define [, = c,./ZﬂOg(C’/Clﬂ (note that ¢, /2 < I;
<¢) forl<i<n Letk <k, < <k, u<n, be the sorted
sequence of [;s with duplicates removed. Since I, = ¢;, we

know that k, = ¢;. We call {k;, k,, ..., k,} the special base of T.
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For convenience of discussion, we define k, = ¢; /2. As will be

shown in Lemma 1, the r value, denoted by r‘, that minimizes
the density increase can always be found in the special base,

ie, 7 =k, forsomev e {1,2, ..., u}. Let ®(*) be the density of
the task set T with its distance constraint multiset C specialized
with respect to {1}, and let @7 = ®5(r*) = min_ ., Pr(r).
We can compute ®(k,), for all k, in the special base of T,
select the one that results in the minimum value of ®(k,),

and use that k, for » in the specialization operation. With
this algorithm, the specialization operation Sr can be done
in time O(n log n) (the log n factor comes from the sorting

of the [s).
The rationale behind the claim that only the numbers in

the special base of T need to be considered in finding v is
now elaborated on. Given any 7, ¢;/2 < r < ¢;, we define 7, =
{T;e T|c;=71- 2/, for some integer j = 0}, and call it the 7-
based subset of T. It is easy to see that 7, # @ (hence, p(7,) # 0)
if and only if r = k,, for 1 < v < u. Recall that when C is spe-
cialized with respect to {r}, every ¢; in C is specialized to a

number b, =7 - 2L198€/"] The reason we define the r-based
subsets of T as above is that for every task T, ey,

¢ = 1 -aloserell _ g oleee/tl hecause 1, = k, and log
(c;/k,) =Llog (c;/ k)l =log (c;/ ¢ lis an integer); as a result,
if ¥ = k,, ¢; will be specialized to itself, and hence, the density
of T; will not increase after specialization. This is also the

reason we only need to choose r from the special base

ki, ky, ..., k,} of T (see Lemma 1).
Suppose B is the multiset resulting from specializing C
with respect to {r}. For a task T, e 7, (e, ¢ =k, - 2, for

some 1< v < u and j 2 0), there are two possible = values

due to the relationship between k, and r:

a) Ifr>k,since r/2 <k,<r, wehaveb, =7 - 27" and

¢ 2k,
e
b) If r <k, since r < k, < 2r, we have b; = r - 2 and

k

-z
Pl

w]p

i

From a) and b), we know that, if k, , <7 <k, for some v, 1<
v <u, then

k. k.
2 oo )+ 2ol )

i
i=v

4.1

v=1
D) =
i=1

Moreover, we can prove the following lemma.

LEMMA 1. Ifk,, <7 <k, for some v, 1 Sv <u, and r # ky, then
®1(r) = 2 d(k,) - plr,).

A proof of Lemma 1 is given in the Appendix.

Recall that p(z) # 0 if and only if r = k,, for 1 < v < u.
Therefore, Lemma 1 implies that ®(r) > ®y(k,), for all 7, k,
< r <k, (see Fig. 7). Thus, to find an # so that

Or(r*) = ®; = min (1),
6y/2<rsey
we only need to compute ®(k,), for all k, in the special base
of T. To summarize, we list the pseudocode of the speciali-
zation operation Sr in Fig. 8, and give the time complexity
in Theorem 2.

Oy (r)

o2 &y X, ks Ky

Fig. 7. The density function ®(r).

/*Input: T = {T; = (e, ¢;) | 1 <i<n}, where T is a DC task set
and ¢;< ¢ foralli <j.*/

/*Output: 7', ®y(r*), and T’ = (T} = (¢;,b;| 1 < i < n}, where
b;|bjforalli<j.*/

1.fori:=1tondol, = c/ﬂbg(q/ﬁlﬂ}

2. sort (4, L, ..., I,) into nondecreasing order and remove
duplicates;
let (k,, ky, ..., k,) be the resulting sequence;

3. fori:=1ton do put T, into subset T

4. forv:.=1toudo p(rkv)::E e;/c;;

Tety,

5. compute ®(k,) according to (4.1);

6. forv:= 1~ 1downto 1 do dr(k,) := - Or(k,,,) - Pz, );
/* see Lemma 1%/

7. find 7 such that D (1) = minrefkl,kz,m,ku} D(r);

- 2|_log(ci /],

8.fori:=1tondob, :=
9. output 7', @(r), and T’ = (T = (¢, )| 1< i < n).

Fig. 8. Specialization operation Sr.

THEOREM 2. The time complexity of specialization operation Sr is
O(n log n).

PROOF. It is easy to see that all the steps in Fig. 8 can be
done in O(n) time, except step 2 (sorting), which can
be done in O(n log n). O

Note that if we require that 7 must be an integer as in
the pinwheel problem, our technique can still be used. We
only need to compute ®(k,) according to (4.1) and then
compute ®(r) for r equal to Ued, Tyt 1 kg, Liad, oo [k, 1,
ki, Lklj, one by one according to Lemma 1, and choose the r
from {LkJ, k111 <i<u—-1} U {k,J} that minimizes ®(r).
This result implies that specialization operation Sx can also
be done in O(n) time by using (4.1) and Lemma 1.
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4.4 Schedulability Condition of Sr

Scheduler Sr works as follows. Given a DC task set T, we
first specialize T using the specialization operation Sr to get
the specialized task set that has a minimum density in-
crease and then use the DCM algorithm to schedule the
specialized task set. In Theorem 3, we show that if

AT) <K(n) = n(2/"-1),

then specialization operation Sr can always find an r, ¢;/2 <
7 < ¢y, such that () < 1. In other words, if /T) < n(2"/"- 1),
T is schedulable using Scheduler Sr. Before we prove Theo-
rem3, we need the following two lemmas.

LEMMA 2.k, @k, ) — k,Pp(k,) = k,p(T, ), for 1<v <u

A proof of Lemma 2 is given in the Appendix.

Let U(d) = {T | T is a DC task set with p(T) < d}. To find
the density threshold of Scheduler Sy, it suffices to find the
maximum d such that (I)fl. <1 forall Te U(d).

LEMMA 3. Let T e U(d) such that, for all T e U),
CI)*T, < (I)*T =®*, and let {ky, k,, ...,
of T. It must be true that &(k) = @, forall k, 1<i<u.

A proof of Lemma 3 is given in the Appendix.

THEOREM 3. Given a DC task set T, if p(T) < K(n) = n(2"/" = 1),
then Scheduler St is guaranteed to find a feasible schedule
for T.

PROOE. Let T e U(d) such that, for all T e U®),
@ <O = 0. Let {ky, ky, ..
of T and 7, be the r-based subset of T". From Lemma
3, we know that ®p.(k,)=®*, forall 1 <i < u, and

& * -k, ®* =k, p(t, ), for

1<v <u. Therefore, for1 <v<u—1,

k,} be the special base

., k,} be the special base

from Lemma 2, we have k_,,

k,,—k .
p(rkv) = Lkv—”—q) . 4.2)
Moreover, from (4.1) and (4.2), we have
u~1 2k
0w 0p5) = 5. 20 ) ol
2
- E(ku ~ k)@ * +p(z, ), 43)
and hence,
2k -k, N
p<Tku) = —ku—q) . (44)
Finally, from (4.2) and (4.4), we have

N & ki —
p(T*) = zp(fk!) = Z P
i=1 i

i=1

2k,

-k, .
3 o*. (4.5)

If T is schedulable by Scheduler Sr, @ must be less

than or equal to 1. If we set & =1 in (4.5), then (4.5) is
exactly the same as (4) in [1] where the least upper
bound of the processor utilization for the RM algo-

rithm is derived (substituting u for m and (k, — k) /k;

for g;in (4) of [1]). Moreover, the minimum value (over
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u=lk, k. 2k -k
the k;s) of the term 2 1—;— +=3—* has been shown
1= i U

to be K(u) = u(2" M 1). Therefore, if we require that <
1, we must have p(T*) < Ku) = u(ZI/u —1). Since u <n
and (2" — 1) > n(2""" ~ 1), we conclude that, given a

DC task set T, if o(T) < K(n) = n(2"" = 1), then T is guar-
anteed to be schedulable by Scheduler Sr. O

Note that lim,_,.,n(2"" = 1) = In 2 = 0.69. This density
threshold is exactly the same as the utilization bound for
scheduling periodic tasks using the well-known RM (rate-
monotonic) algorithm [1]. This suggests that the two ap-
proaches can make the same kind of schedulability guar-
antee. In addition, we can also guarantee the temporal dis-
tance constraints using the DCTS model. Moreover, even if
AT) > n@Y" 1), it does not necessarily mean that the task
set T is not schedulable by Scheduler Sr. As long as the to-
tal density of the task set after specialization is less than or
equal to 1, the task set can be feasibly scheduled by Sched-
uler Sr. To test if the total density of the task set after spe-
cialization is less than or equal to 1, we only need to per-
form the specialization operation, which can be done in
O(n log n) time (Theorem 2). Therefore, the DCTS model is
superior to the periodic task model in terms of the criterion
for schedulability.

5 APPLICATIONS OF DISTANCE-CONSTRAINED
SCHEDULING SCHEME

The DC scheduling scheme is useful both in real-time task
scheduling and in real-time communications. In this section,
we first describe how Scheduler Sr can be used to schedule a
set of sporadic tasks (to be defined below), and then describe
how Sr can be applied to real-time communications.

In Theorem 1, we have shown that given a DC task set T
with /(T) <1 and ¢ | ¢; for all < j, the distance constraints
of all tasks can be satisfied by using the DCM algorithm
(the distance constraint-monotonic priority assignment and
the separation constraint assignment s; = ¢; — f;). Another
important property of the DCM scheduling algorithm is
stated in the following theorem.

THEOREM 4. For a DC task set T, if ;| ¢; for all i <jand p(T) <1,
then the schedule produced by the DCM scheduling algo-
rithm satisfies that during any time interval of length c,
the total processor time allocated to task T is e;, for all i.

PROOF. In the proof of Theorem 1, we have shown that

1) J; is finished before time ¢, i.e., f; < ¢, for all 4, and

2) if a task T} is running at time f, then it is also running
attime t + g - ¢; for any integer g such that f + g - ¢;> 0.
(Recall that f; is the finishing time of Jii)

Thus, it is easy to see that in the time interval [ — 1) - ¢,
j - ¢, the total processor time allocated to T; is exactly
g, for1<i<m,andj>1.

Now, to prove the theorem, we need to consider an
arbitrary time interval [, #,] of length ¢, where 0 < #,
Sj-<t,<(G+1) ¢, forsomej21, and t, — £ = c;
From 1) and 2), we know that the processor time allo-
cated to T; in the time interval [j - ¢;, G + 1) - ¢]] is ex-
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actly e, and from 2) we know that the processor allo-
cation pattern in the time interval [t;, j - ¢;] repeats in
the time interval [t + ¢, G+ 1) - ¢l =1, G+ 1) - ¢l.
Therefore, it is obvious to see that the processor time
allocated to T; in the time interval [¢;, £,] isalsoe;, O

Application to Sporadic Task Scheduling. Based on Theo-
rem 4, Scheduler Sr can be used to schedule a set of sporadic
tasks. In a sporadic task set T = {T}, T, ..., T,,}, each spo-
radic task T; is characterized by its minimum interarrival
time P, its (worst-case) execution time e, and its (relative)
deadline D; (we assume that D; < P). Similar to a periodic
task, a sporadic task consists of an infinite sequence of job
requests. However, the inter-arrival time between two con-
secutive jobs of a sporadic task is at least P,. Specifically, if a
job of sporadic task T; arrives at time ¢, it needs to be exe-
cuted for at most ¢; units of time and must be completed by
time { + D;. Moreover, the next job of T; will only arrive at
time f + P; or later.

It is possible to schedule a sporadic task set using the
deadline-monotonic (DM) algorithm [15] and perform the
schedulability test by assuming the worst-case situation
(i.e., treat the sporadic task set as a periodic task set with P;
as the period of T;). However, in order to perform the DM
priority-driven preemptive scheduling, this approach re-
quires that the scheduler must be notified whenever a job of
a sporadic task arrives. This requirement limits the applica-
tion of this approach. Moreover, it is, in general, hard to
derive a schedulability condition for the DM scheduling
algorithm [15]. Although a schedulability condition for the

case that D; = P; is that as long as the total utilization
(density) Z; e;/D; is less than or equal to n(2"" ~ 1), the
(sporadic) task set is guaranteed to be schedulable by the
DM (RM) algorithm, it is not known whether or not a task set
is schedulable if the total utilization is larger than n@"" -1
(but less than or equal to 1). By treating D; as the distance

constraint of T;, Scheduler Sr can also be used to schedule
sporadic task sets. From Theorem 4, we know that within

any time interval of length D; < D;, Sr will allocate e; units
of time to T}, as long as the total density 27_1 e;/D; of the

task set after specialization is less than or equal to 1, where
D] is the deadline (distance constraint) of T; after the task

set T is specialized by Sr. That is, as long as 2; e, /D] <1,

no matter when a job of T; arrives at the system, there will
be at least e; processor time allocated to it before its
(relative) deadline D; > D/, and hence, its deadline can al-
ways be met. Moreover, from Theorem 3, we know that if

Z; ¢;/D; < #(2Y" 1), then 2; e;/D!<1. In other

words, the system is more predictable by using Scheduler
Sr than using the RM /DM scheduling algorithm.

Application to Real-Time Communications. Scheduler Sr
can also be used to solve real-time communication prob-
lems. For interactive distributed services, such as multime-
dia conferencing and video/audio virtual realities, a certain

amount of bandwidth must be allocated/reserved to de-
liver video/audio frames in time consistent with human
perception and to provide users with a convenient means of
guaranteeing message-transmission delay bounds.

A commonly-used message model in real-time commu-
nications is the peak-rate model [19], in which each message
stream M; is characterized by (C, D, P,), where P; is the
minimum interarrival time between two successively-
arrived messages, and C; and D; are the maximum message
size and the relative deadline (relative to the arrival time) of
the messages in the message stream M, respectively. A
message stream with deadline constraint in real-time com-
munications is similar to a sporadic task in real-time task
scheduling. The difference is that message transmission is
usually assumed to be nonpreemptive, while task schedul-
ing is usually assumed to be preemptive. Although mes-
sages can be divided into a number of fixed-length smallest
transmission entities, such as packets or cells, the transmis-
sion of a packet or a cell is still nonpreemptive. Therefore,
real-time message transmission can be viewed as a discrete
version of task scheduling in real-time task systems.

To show how Sr can be used to provide the timing guar-
antee for message transmission, we take the isochronous
(real-time) service provided in a Distributed Queue Dual Bus
(DQDB) MAN (metropolitan area network) as an example.
As shown in Fig. 9, the DQDB network [20] consists of two
high-speed (155 Mb/s) unidirectional slotted buses running
in opposite directions to which every station is connected.
Data transmission on both buses is slotted. Each slot can
hold one 53-byte cell. Empty slots are generated by the slot
generator at the head of each bus and transported
“downstream.” The isochronous service provided in DQDB
requires that each real-time message stream is given a
unique virtual circuit identifier (VCI). Empty pre-arbitrated
(PA) slots are reserved /marked by the slot generator for all
the real-time message streams with

1) a bit in the access control field (ACF) of each PA slot
set to indicate the slot has been preassigned, and

2) the VCI field of each PA slot set to the appropriate
VCI of the message stream to which the PA slot is
preassigned.

The station with an isochronous message stream then
watches for PA slots with the expected VCI and transmits
its isochronous messages when those slots traverse through
the station. The slot generator must ensure that the PA slots
are properly allocated to each isochronous message stream
M,; so that each message in M, is transmitted within a time
period < D; after its arrival as long as the message inter-
arrival time is > P; > D; and the maximum message size
(measured in cells) is < C;. In other words, the slot generator
must assign at least C; slots to message stream M, between
the arrival time and the deadline of any message of M.

It is easy to see that if a slot allocation scheme can allo-
cate the PA slots in such a way that for any time interval of

length D, at least C; slots are allocated to M, for all i, then
this allocation scheme can be used by the slot generator to
allocate PA slots for real-time message streams in DQDB
networks. This is exactly one of the properties of Sr proved
in Theorem 4. As a result, we can first use the specialization
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Fig. 9. The DQDB (IEEE802.6) network configuration.

operation to transform the deadline constraint multiset D =
{D,, D,, ..., D,} (assume D, < D, <
streams M = {M; = (C;, D)) | 1 £i < n} to another deadline con-
straint multiset D" = {D], D;, ..., D;} which consists solely of
multiples and D; < D; for all i. That is, we find a D/ for each
D, that satisfies D; =D -2/ <D, <D-2/"" =2
integer j > 0, where D is an integer chosen from the range

- <D,) of a set of message

D/, for some

(D,/2, Dy] that results in the minimum total density

= Z c,/D;.
i=1

We then use a DCM-based on-line slot allocator to schedule
the specialized message set, M" = {M; = (C,,D))| 1<i<n},
and generate a valid slot allocation schedule for the mes-
sage stream set as long as p(M’) < 1. The technique used
here is actually a discrete version of the technique used in
scheduling sporadic real-time tasks. The interested reader is
referred to [21] for a detailed account of how to apply
Scheduler Sr to the DQDB isochronous service. With a
similar approach, we can also apply Scheduler Sr to solve
the token scheduling problem in a centralized-scheduling
multiaccess LAN (local area network) [22] and many other
real-time communication problems.

6 CONCLUSIONS

In this paper, we proposed the distance-constrained task
system (DCTS) model which imposes that the temporal
distance between any two consecutive executions of a task
must be smaller than or equal to a predefined constraint.
Since the DCTS model guarantees the temporal distance
constraints which the periodic task model may not be able
to effectively guarantee, it serves as a more intuitive and
adequate scheduling model for “repetitive” task executions
with temporal distance constraints.

We presented an efficient scheduling algorithm, Scheduler
Sr, to schedule task sets with temporal distance constraints.
We showed that a distance-constrained task set with » tasks
can be feasibly scheduled by using Scheduler Sr as long as its
total density is less than or equal to n(2"/"~1). This provides
the fundamental requirement of predictability in hard real-
time applications. By predictability, we mean the determinis-
tic guarantee that all tasks will meet their deadlines as long as
the total density is held within the density threshold.

One interesting finding is that the derived density thresh-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 7, JULY 1996

old n(2"" - 1) is exactly the same as the well-known utiliza-
tion bound derived in [1] for scheduling periodic task sets
using the rate-monotonic scheduling algorithm. This sug-
gests that the two approaches can make the same kind of
schedulability guarantee. Moreover, as long as the total den-
sity of a DC task set after specialization is less than or equal
to 1, the DC task set can.be feasibly scheduled by Scheduler
Sr. Therefore, the DCTS model is superior to the periodic task
model in terms of the criterion for schedulability.

We also discuss how to apply the DCTS model and its
scheduling scheme to the sporadic task scheduling problem
and to the real-time communication problem in DQDB
networks. We believe that the DCTS model can be applied
to many real-time applications and provide better and more
desirable solutions.

APPENDIX
PROOFS OF THE LEMMAS

LEMMA 1. If kv_1 <1<k, forsomev, 1 <v<u, and r+k, then
O = o (k) - p(z,).

PROOF. From (4.1), we have, for k,_, <7 <k,,
2k; 1k,
(1) = 2 (rk )+ 25l
+Sieln)

= (k )
Note that p( z;) =0, fork, ;<r<k,
Forr=k,_;, we have
&2k

)-8 et ) 3 )

:Zaﬁﬂ%%zzﬁw%%de
k -1 2k u ki
=5 [Zk—vlp(rki) + ;Ep(rkl)j _ p(TkH)

o=1\i=1
k
= kv_v_]‘b"r(kv) - P(Tk,,,l)

O

LEMMA 2. k@1 (k k,@y(k,) =k,p(t, ), for 1<v <u.

v+l v+]) -

PROOF. From Lemma 1, for 1 < v < 1,

kv+l
Or(k,) = T Oplkyyy) = p(T ).

Therefore, k, @1 (k,,,) — k,®p(k,) = k,p(t, ). a

v+1
LEMMA 3. Let T € U(d) such that, for all T' € U(d),
DL <DL =D,
and let {ky, k,, ..., k,} be the special base of T. It must be
true that ®1(k) = @, forall k, 1 <i<u.



PrROOF. The lemma is trivially true for u = 1. We prove the

lemma for u > 1 by contradiction. Suppose to the
contrary that there exists a p, 1 <p <u, ®qlk,) > ®. We
can show that there exists a task set T with the same
total density and the same special base as T, but
<I>*T, > @ *, which contradicts the definition of T. To
show this, we need to consider two cases:

Casel:1<p<u.

Let's change the densities of 7, and 7, in T by
i p-1

changing the execution times of some of the tasks to
create another task set T”:

a) 7, is changed so that p(z, ) is increased by
4 ?
§ = min{®@.(k,) - @*, (1-&)p(7, I}, and
p-1
b) 7, ischanged so that p(t, ) is decreased by ¢,
[ p-1
where £is a small positive number. Note that o(T) =

A(T), hence T € U(d). From (4.1), we know that for
k,,<r<k,and1<v<u,

—! 2k k;
@)= 5.2 0{)+ X7 ol )
i=1 i=v

Therefore, we have:

i) if r < k,,, then D (1) — D (r) = S(kp - sz)/r >0,
ie, @p.(r) > d*;

ii) if » = k,, then

(DT’(kv) - (DT(kP) - 5(kv B 2kp—1)/kp >-6z0r _(I)T(k%’)’
ie, @pL(r)>0%;

iiif > k,, then ®p,(r) ~ @ () = 28(k, =k, ) /r >0,
ie, ®p.(r) > 0 *.

So, @y, > @, which contradicts the definition of T in
the lemma.

Case2:p=1.

In this case, we change the densities of Ty and 7, to

create task set T":

a) T Is changed so that p(7; ) is increased by

8 = min{®@ (k) - ®*, (1 -&)p(t, )}, and

b) 7, ischanged so that p(t, ) is decreased by &

Again, we have p(T) = p(T"), hence T" € U(d), and we

have:

i) if r = k;, then

(k) - (k) = 8(k, —k,) [k, > =6 2 @ *~D(k)),

ie, @p(r) > @%;

ii) if 7 > ky, then @ (r) — @1 (r) = 62k, — k,)/r > 0, i.e.,
D (1) > D ¥,

So, again, @7, > @, which contradicts the definition
of T in the lemma. O
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