A Dynamic Replica Selection Algorithm for Tolerating Timing Faults*

Sudha Krishnamurthy, William H. Sanders, and Michel Cukier
Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

E-mail: {krishnam, whs, cukier}@crhc.uiuc.edu

Abstract

Server replication is commonly used to improve the fault
tolerance and response'time of distributed services. An im-
portant problem when executing time-critical applications
in a replicated environment is that of preventing timing fail-
ures by dynamically selecting the replicas that can satisfy
a client’s timing requirement, even when the quality of ser-
vice is degraded due to replica failures and excess load on
the server. In this paper, we describe the approach we have
used to solve this problem in AQuA, a CORBA-based mid-
dleware that transparently replicates objects across a local
area network. The approach we use estimates a replica’s
response time distribution based on performance measure-
ments regularly broadcast by the replica. An online model
uses these measurements to predict the probability with
which a replica can prevent a timing failure for a client.
A selection algorithm then uses this prediction to choose
a subset of replicas that can together meet the client’s tim-
ing constraints with at least the probability requested by the
client. We conclude with experimental results based on our
implementation.

1. Introduction.

Server replication is a popular approach for building
fault-tolerant distributed services (e.g., [1, 7, 12, 3, 14, 6]).
Replication is also a commonly used solution for improv-
ing the scalability of a distributed service, i.e., to ensure
that the response time of a service does not significantly
degrade with an increase in the number of clients accessing
the service (e.g., [10; 13, 4]). Achieving both fault tolerance
and scalability at the same time, however, is a challenging
goal, especially when the number of available replicas is
constrained. We can achieve good fault tolerance by allo-
cating all the available replicas to service a single client.

*This research has been supported by the DARPA Quorum Integration
contract F30602-98-C-0187.

0-7695-1101-5/01 $10.00 © 2001 IEEE

107

However, such an approach is not scalable as it increases the
load on all the replicas and results in higher response times
for the remaining clients. On the other hand, assigning a
single replica to service each client allows multiple clients
to be serviced in parallel. However, should a replica fail -
while servicing a request, the failure could result in an un-
acceptable delay for the client being serviced. Hence, nei-
ther approach is suitable when a client has specific timing
constraints and when failure to meet the constraints results
in a penalty for the client. Thus, in order to build a depend-
able service, we need a method that attempts to prevent the
occurrence of such timing failures for a client by selecting
replicas from the available replica pool, based on an under-
standing of the client’s timing requirements and the respon-
siveness of the replicas. The research described in this paper
presents the approach we have used to realize this goal.

Several other replica selection algorithms have been for-
mulated with the objective of choosing the replica that can
deliver the lowest possible response time. These algorithms
often target clients of stateless, distributed services, such as
the World Wide Web, in which the servers do not maintain
any records of ongoing client transactions. Some of these
algorithms choose the nearest replica based on a distance
metric [9], and some choose the replica with the best histor-
ical average response time [19]. Some predict the time to
propagate a message to different replicas using regression
analysis of previously collected data [2] and pick the replica
that has the lowest future propagation time. Finally, some of
them actively monitor both replica load and network delays,
use these to estimate the response times of the replicas, and
select the replica that has the smallest estimated response
time [5]. All of these efforts assign a single replica to each
client and do not consider the case in which a replica may
fail while servicing a request. As such, it is the responsi-
bility of the client to retransmit its request upon failure to
receive a response. Such a simple retransmission strategy,
however, may not be suitable for clients with specific time
constraints.

In contrast, our work targets clients that have specific re-
sponse time requirements and require that these be met with

Communication using active handler in the AQuA gateway

" Request path as perceived
Proteus AQuA Ciient > Pa . AQuA Server
Dependabitity AQuA by client/server AQuA
Manager Gateway | 1 H Gateway

Protocol Handlers §

v
Maestro/Ensemble] [Maestro/Ensemble

Protocol Handlers

Maestro/Ensemble J
'

ar

Intcrcppted Path

Figure 1. Communication using AQuA gate-
way handlers

certain probabilities. As in the above efforts, our work also
targets clients of stateless applications such as search en-
gines and radar-tracking applications. However, the repli-
cas in our case are distributed across a local area network
(LAN). The approach we use first estimates a replica’s re-
sponse time distribution based on performance measure-
ments regularly disseminated by the replica. An online
model uses these measurements to estimate the probabil-
ity with which the replica can prevent a timing failure for a
client. A selection algorithm uses this estimate to choose a
subset of available replicas that can together meet a client’s
timing constraints with at least the probability requested by
the client. Each replica in the selected set independently
processes the request and sends its response. However, only
the earliest reply is delivered to the client. The selected sub-
set is chosen in such a way that the client’s probabilistic
timing requirement can be met even when one of the mem-
bers in the selected subset crashes before responding to the
request. We have implemented our algorithm in AQuA, a
CORBA-based middleware that supports transparent repli-
cation.

The rest of this paper is organized as follows. Section 2
presents an overview of AQuA. Section 3 describes our as-
sumptions and our system model. In Section 4 we describe
the replica the selection problem. In Section 5 we present
the dynamic replica selection algorithm that we have devel-
oped to tolerate timing faults in AQuA. We present exper-
imental results based on our implementation in Section 6.
In Section 7 we compare our work with some of the related
efforts, and finally, in Section 8 we present our conclusions.

2. Overview of AQuA

Figure 1 presents an overview of the AQuA middleware.
Proteus, a component of AQuA [3], enhances the capa-
bilities of CORBA [15] objects to provide fault tolerance

108

for distributed applications. Fault tolerance is provided by
transparently replicating objects using active and passive
replication. The Proteus dependability manager manages
the replication level for different applications based on their
dependability requirements. Replicas offering the same
service are organized into a group. Communication be-
tween members of a group takes place through the Maestro-
Ensemble protocol stack [20, 8], above which AQUA is lay-
ered. Maestro-Ensemble also detects and notifies the mem-
bers of changes to the group membership. The use of group
communication in AQuA is transparent to the end appli-
cations. Hence each of the clients, which are all CORBA
objects, is given the perception that it is communicating
with a single server object using CORBA’s IIOP [15]. This
is achieved using an AQuA gateway, which transparently
intercepts a local application’s CORBA message and for-
wards it to the destination replica group through Maestro-
Ensemble, as shown in Figure 1. For the sake of clarity, in
this figure we have illustrated a server replica group hav-
ing only a single member. In reality, this group may have
multiple replica members.

The different replication schemes supported by AQuA
are implemented as protocol handlers within the gateway.
An AQuA client uses different gateway handlers to com-
municate with different server groups. These handlers are
responsible for tolerating different kinds of faults. Previ-
ous work in AQuA has addressed the issue of tolerating
crash failures using the active [18] and passive [17] han-
dlers. [16] also discusses how AQuA simultaneously toler-
ates value faults and crash failures using an active handler.
In this paper, we describe the approach we have used to tol-
erate timing faults, which has resulted in the development
of the timing fault handler.

3. Syétem Model

Given this overview of AQuA, we now describe the sys-
tem for which we want to solve the dynamic replica se-
lection problem. The machines hosting replicated services
in this system are distributed across a local area network
(LAN). A machine may host multiple replicas. The services
in this system are frequently accessed by several clients
concurrently. Clients requesting the use of these services
demand specific response time guarantees that have to be
met with a certain probability. Failure to receive a response
for a request within the specified time results in a timing
failure for the client.

We assume that the load on a replica may fluctuate and
that periods of high load may make it less responsive. We
also assume that while the links in the LAN connecting
the system do not experience frequent fluctuations in traf-
fic, they may experience occasional periods of high traffic,
which may result in large delays in the message delivery

time. Finally, a replica may crash, making it unresponsive.
Any of these factors may contribute to a timing fault.

4. Problem Description

Given the above sources of timing faults, the problem we
address is that of finding a way to reduce the occurrence of
timing failures by servicing as many requests as possible in
a timely manner. We achieve this by devising an approach
that will allocate the replicas to the clients based on their
response time requirements. We now state how a client ex-
presses its timing constraints and then outline the decisions
that have to be made when allocating the replicas.

A client which requires that a service respond to its re-
quest within a specific time, expresses its requirements as a
quality of service (QoS) specification. The client may either
specify its QoS requirement at start-up time, or negotiate it
at runtime as often as it wants. This specification includes
the name of a service, the time by which the client wants
to receive a response after it transmits its request to this
service, and the minimum probability with which it wants
this time constraint to be met. If a response does not meet
this time constraint then it results in a timing failure for the
client. If the frequency of timing failures is so high that the
systemn is unable to deliver timely responses with at least the
minimum probability that the client has specified, then the
client receives a notification through a callback.

Our research objective is to reduce the occurrence of tim-
ing failures under normal conditions as well as when the re-
sponsiveness of a service is reduced, either due to failure of
its replicas or due to the load induced when multiple clients
with different QoS requirements access a service over a pe-
riod of time. We achieve this objective by designing a re-
quest scheduler that transparently intercepts a client’s re-
quest, estimates the response time of the different replicas
offering the service that the client has requested, and selects
a subset of available replicas that can meet the client’s re-
sponse time requirements with a probability at least as high
as that requested by the client. The scheduler uses histori-
cal performance data collected at runtime as inputs to solve
a probabilistic model, which estimates the probability that a
response will be received on time. The scheduler then for-
wards the request to the selected replicas. Each of the se-
lected replicas independently services the request and sends
back its response. However, only the earliest response is
delivered to the client. In this paper, we describe the de-
sign of a distributed scheduling system within the AQuA
middleware, in which each client is associated with a local
scheduling agent that makes the replica selection decisions
on the client’s behalf.

In a system in which a replica’s responsiveness may
change unpredictably due to either load or crashes, like the
system we have described in Section 3, it is impossible for

109

the scheduler to predict with certainty whether any single
replica can meet a client’s timing constraint. In order to sat-
isfy our goals of providing a scalable service while at the
same time providing a reasonable level of fault tolerance,
an important decision our scheduler has to make is that of
choosing the redundancy level with which a request has to
be serviced. The scheduler we have designed makes its de-
cisions adaptively based on the probability with which the
individual replicas will meet the client’s timing constraint.
The higher the probability that the chosen replicas will meet
the constraints, the lower is the redundancy level.

5. Dynamic Replica Selection in AQuA

We now describe a dynamic replica selection algorithm
that we have developed to address the timing failure prob-
lem in AQuA. We first discuss the performance parameters
we use to guide the replica selection. We then discuss the
design of the information repository that stores the mea-
sured values of these parameters. We next describe our
selection algorithm, which uses these experimentally mea-
sured parameters to build a model that guides the replica
selection. We conclude this section with a description of
the design and implementation of the timing fault handler
that tries to meet a client’s timing requirements using this
selection algorithm.

5.1. Factors Influencing the Response Time

Figure 2 shows the stages along the path traversed by a
typical request from an AQuA client that has specific tim-
ing constraints. In Stagel, an AQuA client invokes a re-
mote method using CORBA’s IIOP [15]. The request is
then intercepted by a protocol handler in the AQuA gate-
way. The handler marshals the request into a Maestro mes-
sage, and in Stage?2 presents it to the Maestro/Ensemble pro-
tocol stack, from where it is transmitted across the network
to the server gateway. This gateway-to-gateway communi-
cation may use point-to-point or multicast communication
depending on the number of replicas to which the client re-
quest is forwarded. In Stage3, the protocol handler in the
server gateway receives the Maestro message, demarshals
it into a CORBA message, and enqueues it in the request
queue of the server application using CORBA’s dynamic
invocation interface (DII) [15]}. The server uses FIFO or-
dering for servicing the requests in the queue. After the
server services the request in Stage4, it sends its response
to the client. The protocol handler in the server gateway
intercepts this response and forwards it to the client gate-
way along the Maestro/Ensemble protocol stack. The client
gateway delivers the earliest response it receives for a re-
quest by making a CORBA upcall to the AQuA client. We
conducted experiments to determine the factors that have

[AQuA Server

AQuA Client
AQuA

Gatewa |

l Stagel

Staged

AQuA
Gateway ?

Staged

Handter Handler

[Maestro/Ensemble] [Maestro/Ensemble

NS

<Local Area Network Stage2

Figure 2. Stages along the path traversed by
a request in AQuA

a significant impact on a replica’s response time in AQuA.
Based on our off-line analysis, we concluded that a replica’s
response time in AQuA is mainly affected by the following
factors:

Gateway-to-Gateway Delay: the time for an AQuA re-
quest or response embedded within a Maestro message
to travel between two AQuA gateways, as in Stage2
of Figure 2. From the figure, we see that this delay
includes the time for a message to travel through the
Ensemble/Maestro protocol stack and the time for it to
travel on the wire across the LAN. This delay is in-
curred on both the request and response paths and the
two delays together make up the two-way gateway-to-
gateway delay. For a message of a given size, this de-
lay varies mainly with the load on the network and the
number of group members involved in the communi-
cation.

Queuing Delay: the time that a request spends waiting
in the request queue of the server. This time varies
with the speed at which the requests are serviced. It
also varies with the number of previously outstanding
requests in the queue, because the server uses FIFO
scheduling to service its request queue.

Service Time: the time spent by the server to process the

request after dequeuing it from the request queue. For

. requests that are of the same kind, this time mainly
varies with the load on the host.

In addition to the above sources of delay, a response from
a replica may suffer an unacceptable delay if the replica
crashes before responding.

5.2. Gateway Information Repository

For each replica, we regularly monitor the above per-
formance parameters at runtime, and maintain the recently

110

measured values in a distributed information repository. An
online model then uses these measurements to estimate the
response time of a replica during replica selection. Since
this information changes rapidly with time, the smaller the
time to update the information repository, the more current
and accurate is the information provided by the repository.
This in turn facilitates better selection decisions. Further,
since the information lookup is done by the scheduler for
each request, it is important that the lookup time be as small
as possible.

As mentioned in Section 2, an AQuA client uses different
gateway handlers to communicate with different servers. In
other words, the gateway handler identifies the server group
with which a client is communicating. Thus, a client that
is communicating with multiple servers would have mul-
tiple handlers loaded in its gateway. We leverage this de-
sign and associate an information service with each timing
fault handler within a client’s gateway. Although this de-
sign has the drawback that the replica-related information
is redundantly stored at multiple client gateways, it has sev-
eral advantages compared to a global information service,
which would avoid this drawback. First, having a repos-
itory local to each client handler avoids a single point of
failure. Second, it avoids the overhead of making a call to a
remote information service. Third, allowing each gateway
handler to access its local repository avoids the need to en-
force concurrency control, which would otherwise result in
high access overheads. Finally, since a repository local to a
handler only caches information relevant to the service as-
sociated with that handler, the search space is smaller, and
as a result it takes less time to access information.

The gateway information repository within each client
handler stores the list of replicas offering the service as-
sociated with the handler. For each of these replicas, it
stores the current number of outstanding requests in the
replica’s request queue and the most recently measured two-
way gateway-to-gateway delay between the client and the
replica. In addition, the repository also stores a service time
vector and a queuing delay vector for each replica. The
former records the service time while the latter records the
queuing delay for the most recent [requests serviced by that
replica. Thus, | can be considered as the size of a slid-
ing window of requests, and its value is chosen so that it
includes a reasonable number of recent requests but elimi-
nates obsolete measurements. The next subsection explains
how these parameters are used in the selection of the repli-
cas.

5.3. Model-Based Replica Selection Algorithm

Using the performance measurements collected above as
inputs, the local scheduler that is part of a timing fault han-
dler builds a model to predict the probability that a subset of

replicas will be able to meet a client’s timing requirements.
The selection is then done based on this resultant probabil-

ity. We first define the notation we use to present the model: -

o M = {my,ma,...,my} is the set of replicas offering
the service requested by a client. The scheduler obtains
this set from its local information repository.

e R ={Ry,Ry,...,R,}, R; is the random variable de-
noting the time to receive.a response from a replica
m; € M, after a request was transmitted to it.

e P.(t) is the probability with which the client wants a
response for its request by time ¢, as described in Sec-
tion 4.

We now need to determine the probability that a response
from a subset K C M, consisting of £ > 0 replicas, will
arrive by the client’s deadline, ¢, and thereby avoid the oc-
currence of a timing failure. We denote this probability by
Py (t). As stated earlier in Section 4, each replica in the
subset independently processes a request and sends back its
response. However, only the first response received for a
request is delivered to the client. So a timing failure occurs
only if no response was received from any of the replicas
in the set K within ¢ time units after the request was sent.
Computing the distribution of the time until a response is
received is straightforward if we assume that the response
times of individual replicas are independent of one another.
While this is not strictly the case in a shared network where
the network delays may be correlated, we believe it is a rea-
sonable assumption to make, since the network delay is usu-
ally a small fraction of the replica’s response time in a LAN
environment. We use this independence assumption to com-
pute the probability, Pk (t), for the replicas in subset K, as
follows:

Py (t).= 1 — P(no replica in K responds before t)

Pety=1- [] P@®:>1)
m;EK

Pet)=1-] (0 - Fr(®) (1)

m;eK

where Fg, (t) is the response time distribution function for
replica m;.

5.3.1. Computing the Response Time Distribution.
Given the above model, we now explain how we compute
the value of FFg,(t) for a replica m;. Henceforth, we will
use the subscript ¢ to refer to the replica m;. Based on the
analysis presented in Section 5.1, we define the response
time random variable, R;, using Equation 2 below.

Ri =S, + W, + T, Q)

111

where S; is the random variable denoting the service time
for a request serviced by m;; W; is the random variable de-
noting the queuing delay experienced by a request waiting
to be serviced by m,; and 7 is the random variable denoting
the two-way gateway-to-gateway delay between the client
and replica m;. For each request, we experimentally mea-
sure the values of the service time, S;, as described later
in Section 5.4, and record the values of the most recent {
requests in the service time vector in the information repos-
itory. We do the same for the queuing delay, W, and record
its recent values in the queuing delay vector in the infor-
mation repository. Thus, these vectors represent a sliding
window, L, of size I, over which the performance history
is recorded. For the gateway-to-gateway delay, T}, we de-
cided to use its most recently measured value rather than
recording its history over a period of time. This decision
was based on the observation that the traffic in a LAN does
not frequently fluctuate like the other two parameters. We
verified this observation to be true for the environment we
used. For environments in which this observation is not
true, it would be simple to extend our approach to record
the value of the gateway-to-gateway delay over a sliding
window as we do above for the service time and queuing
delay.

Given that we can measure the performance parameters
and record them at runtime, we can now compute the value
of the distribution function Fg, (t) for a replica m;. To do
this, we first compute the probability mass function (pm f)
of S; and W, based on the relative frequency of their values
recorded in the sliding window, L. We then use the pm f of
Si, the pmf of W;, and the recently recorded value of T;
to compute the pm f of the response time R; as a discrete
convolution of W;, S;, and T;. The pmf of R; can then
be used to compute the value of the distribution function

Fp, (t)

5.3.2. Replica Selection Algorithm. Given the ability to
compute the probability that an individual replica will meet
a client’s time constraint, we now describe the algorithm
that applies Equation | to select a set of replicas that can
meet this time constraint with the probability the client has
requested. The selection algorithm is outlined in Algo-
rithm 1. The algorithm first sorts the replicas in decreasing
order of the probability that they can individually meet the
client’s response time requirement. In Line 4, it includes
the first element of this sorted replica list in the selected set,
K. It then considers the remaining replicas in this list in
sorted order, including each replica in the candidate set X,
until it includes enough replicas in X such that the condi-
tion Px (t) > P.(t) is satisfied, where Px (¢) can be com-
puted using Equation 1. In Line 11, we extend this candi-
date set X by including the first element, mg, which was
selected in Line 4, to form the final selected set of replicas,

K. Thus, we include the replica, my, that has the highest
value of Fg,(t), in the final selected set, although we do not
consider it when testing the condition in Line 10. We now
explain the reason for this. .

Since replicas may crash, our goal is to choose a set of
replicas that can meet a client’s time constraint with the
probability the client has requested, even when one of the
replicas in the selected set crashes before servicing the re-
quest. Our intuition is that if we can choose a set of repli-
cas that can satisfy the timing constraint with the specified
probability despite the failure of the member, mg, which has
the highest probability of meeting the client’s deadline, then
such a set should be able to handle the failure of any other
member in the set. The loop in Lines 6-14 of Algorithm 1
attempts to find such a subset, X, that satisfies the condition
in Line 10 by excluding the member mg. If it finds such a
set, it extends the set to include mg to form the final set, K.
If, however, it is unable to find such a set, then it returns the
complete set of available replicas, M. We now justify that
the set K found by Algorithm 1| does indeed handle single
replica crashes. Let go = 1 — F,(¢), where Fg,(t) is the
distribution function of the first member in the sorted list.
Since Fr,(t) > Fg,(t), Vi, we have,

90 <9i, 0< g <1, Vi,

x
90*(91*"’*gi—l*gi+1*"'*gx)Sng
. i=1

x
1—(90*91*"'*9¢—1*gi+1*“'*gx)Zlﬁngi
i=1

1-(goxg1* - *gi_1*gip1 % - *xgg) > P(t) (3)
Equation 3 follows from the condition in Line 10 of Algo-
rithm 1. This equation shows that should any one of the
members, 7, belonging to the selected set K crash without
completing its transaction, the other members should still
be able to meet the client’s timing constraint with the prob-
ability the client has requested.

We chose to address only single replica crashes in this
work because we targeted an environment in which replicas
offering the same service ran on different hosts. It is our
observation that the chances of two hosts failing simultane-
ously during a single method invocation is fairly small. As
such, we assume that the probability of simultaneous fail-
ures of two replicas offering the same service is fairly low.
If this is not the case, it should be simple to extend the above
algorithm to handle multiple failures by following a method
similar to the one outlined above.

5.3.3. Algorithm Overhead. In a practical implementation,
the overhead incurred by the selection algorithm has to be

112

Algorithm 1 Replica Selection Algorithm
Require: V =<1, F,(t) > {set of replicas and their cor-
responding distribution function}

Require: Client Inputs:

t : client’s deadline, .

P,(t): probability that this deadline should be met

X<=9¢

s prod <=1 .

: sortedList <= sort V in decreasing order of Fg, (t)

. K « [first(sortedList)] {always include the replica
that has the highest probability in the selected list}

5: newSortedList <= sortedList - K

6: for all i in newSortedList do

7. X <= XUd

8

9

AW -

gi < 1- FR; (t)
prod < prod * g;

if 1 — prod > P.(t) then
11: K=XUK :
12: return K {found an acceptable replica set}
13: endif
14: end for

- return M {return the set comprising all the replicas}

considered by modifying Algorithm 1 to select those repli-
cas that can respond within ¢ — ¢ time units rather than ¢
time units, where ¢ is the client’s deadline as before, and
d is the overhead of the algorithm. As seen from Algo-
rithm 1, the overhead mainly .depends on the number of
replicas, n, and the size of the sliding window, [, that we use
to record the performance measurements broadcast by the
replicas. In our implementation, we measure this overhead,
4, each time the selection algorithm is executed; and use the
most recently measured value of § to compute the value of
Fg,(t —4). We then include this overhead by merely modi-
fying Algorithm I to use the value of F'g, (¢ — §) wherever it
uses the value of F'g, (t). The rest of the algorithm remains
unchanged. '

5.4. Design of the Timing Fault Handler

Given a QoS specification from a client as described in
Section 4, we now explain how the timing fault handler tries
to meet the client’s response time requirements by making
use of the above selection algorithm. A client may either ne-
gotiate its QoS requirements at runtime or specify them in a
configuration file, which is read by the timing fault handler
when it is Joaded in the client gateway. The QoS require-
ment a client requests from a service is stored in the handler
the client uses to communicate with that service. When a
client makes a request to that service, the handler uses this
QoS specification to select the set of server replicas to pro-
cess the request.

The timing fault handler uses the Maestro-Ensemble
group communication layer to manage communication
transparently between a client application and a replicated
service. Before they can communicate, the client and server
applications should join the same multicast group. This
multicast group is similar to a connection group [3] in
AQuA except that it allows a message to be sent to a speci-
fied list of members in a group rather than be broadcast s all
group members. The timing fault handler uses the multicast
group for forwarding requests from a client to a selected
subset of server replicas, as will be explained in the next
subsection. The client handlers that are interested in receiv-
ing performance updates from the servers use this group to
multicast their subscription request to the server replicas.
Each server replica then keeps track of its subscribers and
notifies them whenever its performance parameters change.
This information, pushed from the server replicas, is then
used to update the client’s gateway information repository,
as will be explained in further detail in the next subsection.
When a member of a multicast group crashes, Maestro-
Ensemble detects the failure and notifies all the group mem-
bers about the change in the membership. This allows those
clients that are members of the group to remove the entry
for the failed replicas from their local information reposito-
ries. These failed replicas will therefore not be considered
in the selection process for future requests.

5.4.1. Request-Response Handling. A typical request-
response is processed by the timing fault handler as follows.
After transparently intercepting a request from a client, the
client’s timing fault handler records the interception time,
to, and hands over the request to its scheduler module.
The scheduler first retrieves the replica list for the service
from its local gateway information repository. If the service
has never been accessed before, the information repository
would not contain any performance data for the replicas of-
fering that service. In this case, the selection strategy se-
lects all the replicas in the list. This allows the replicas
to publish their performance updates to the clients, as de-
scribed below, and thereby initialize the information repos-
itories. During subsequent requests, the scheduler uses this
performance history from its local information repository to
choose the replicas based on the client’s QoS requirements
using the selection strategy explained in Section 5.3. The
handler then multicasts the client’s request to the selected
replicas using Maestro-Ensemble and records the sequence
number of the message and its time of transmission, ¢;.

Upon receiving the request, the timing fault handler at
the server enqueues the request in the replica’s request
queue as shown in Stage3 of Figure 2. It then records the
time, £y, at which the request is enqueued. The AQuA gate-
way asynchronously processes the request queue in FIFO
order. When the request is dequeued for service, the gate-

113

way records the dequeue time, 3, before invoking the server
application to service the request using CORBA’s dynamic
invocation interface [15]. When the server sends its re-
sponse back to the client, the timing fault handler inter-
cepts the response and records the service duration, ¢,. The
server’s handler then forwards the reply back to the client
gateway along with the performance data, which includes
thé Setvice duration ts, and the time, 14, spent by the request
in the queue, where t, = t3 — t3. The handler publishes
this new performance data, along with the replica’s current
queue length, to all its subscribers. This information is used
by the subscribers to update their local information reposi-
tories. In our current implementation, the server publishes
its performance update to its subscribers, each time it pro-
cesses a request.

When the client handler receives a reply from a replica,
it records the time of reception, t4, and extracts the perfor-
mance data embedded in the message. If the reply is the
first one it has received for a request, the handler delivers
the reply to the client. The handler then uses the extracted
performance data to measure the new round-trip gateway-
to-gateway delay, t4, between the client and replica. This
delay, tq, is given by ty = t4 — t; — ¢4 — t5, where ¢, and
ts are obtained from the extracted data. The handler then
updates the information in its local repository with this new
value of the gateway-to-gateway delay.

Since we allow a request to be processed redundantly by
multiple replicas, the client gateway may receive multiple
responses for the same request. The client gateway, how-
ever, does not deliver any of the redundant replies to the
client. Instead it merely discards them and uses the per-
formance data it-extracts from each of them to update its
information repository with the new value of the gateway
delay, in the same manner as it did for the first reply.

5.4.2. Detecting Timing Failures. We now explain how
the timing fault handler detects timing failures and handles
them when they occur. The handler maintains a counter that
keeps track of the number of times its client has failed to re-
ceive a timely response from a service. When the handler
receives the first reply for a request sent by its client to a
service, the handler checks whether a timing failure has oc-
curred by computing the response time, ¢, = t4 — tg, where
t4 is the time at which the first reply arrived at the handler,
and ?¢ is the time at which the handler intercepted the re-
quest from its client. A timing failure occurs if ¢, > ¢,
where t is the response time requested by the client. If
the handler detects that a failure has occurred, it updates
its counter. If the frequency of timely responses from the
service does not meet the minimum probability the client
has requested in its QoS specification, the handler notifies
the client by issuing a callback. The client can then either
choose to renegotiate its QoS specification or issue its re-

900 T T T T T
sliding window size: 5 —f—
sliding window size: 10 --§-_—,_)

sliding window size: 20 3
800 | X

S -

Selection Algarithm Overhead (microsecs)

100 s

2 3 4 5 6 7 8
Number of replicas

Figure 3. Overhead of replica selection algo-
rithm

quests to the service at a later time. Note that when we
collect the timing data as explained above, we do not re-
quire that the clocks be synchronized because we always
measure the two end-points of a timing interval on the same
machine.

6. Experimental Results

We conducted experiments using our implementation of
the timing fault handler in AQuA to analyze the perfor-
mance of the selection algorithm. Our experimental setup
is composed of a set of uniprocessor Linux machinés dis-
tributed over a LAN. For a minimum-sized request having
negligible service time, the minimum value we achieved for
the response time, ¢, (defined in Section 5.4.2), was about
3.5 milliseconds. Figure 3 shows how the overhead of the
selection algorithm varies with the number of replicas for
three different sizes of the sliding window : 5, 10, and 20.
These overheads include the time to compute the distribu-
tion function and the time to select the replica subset. These
overheads are incurred during each request. Computing the
distribution function contributes to 90% of these overheads
while selecting the replica subset using Algorithm 1 con-
tributes to the remaining 10%. For our experiments below,
we used a sliding window of size 5.

We also conducted experiments to evaluate how effec-
tively the subset of replicas chosen by the model-based se-
lection algorithm was able to meet a client’s deadline with
the probability requested by the client. To do this, we used
two clients that ran on different machines and independently
issued requests to the same service with a one second delay
between receiving a response and issuing the next request.
The number of server replicas available for selection during

114

7 T T T T

ility of timely 0.

y of timely 1 0.5 .-
jty of timely o

.

oxt

.

o

Average Number of Replicas Selected
x

s n n
140 160 180
Cient Deadline (milliseconds)

0
100 120 200

Figure 4. Comparison of the number of se-
lected replicas

each experiment was seven. Each server replica ran on a dif-
ferent machine and responded with an integer data. Since
the machines in our testbed had insignificant background
load on them, we simulated the load on the servers by hav-
ing each replica respond to a request after a delay that was
normally distributed with a mean of 100 milliseconds and a
variance of 50 milliseconds. In every run, each of the two
clients issued fifty requests to the service. One of the clients
requested a deadline of 200 milliseconds in each run and
specified that this deadline be met with a probability > 0.
The second client requested a different deadline in each run.
For each of these deadline values of the second client, we
computed the probability of timing failures in a run of fifty
requests by measuring the number of responses in the run
that had failed to arrive by the deadline specified by the sec-
ond client. In order to study the behavior of the dynamic
selection algorithm for different values of the probability of
timely responses specified by a client, we repeated these ex-
periments for three different probability values specified by
the second client: 1) a probability value of 0.9, 2) a proba-
bility value of 0.5, and 3) a probability value of 0. We chose
a probability value of O because this represents the case in
which the dynamic selection algorithm would achieve the
highest timing failure rates. Hence, this case would provide
a perspective on the worst-case behavior of the algorithm.
Figure 4 shows the expected number of replicas selected
by the dynamic selection algorithm to service the second
client for each of its QoS specifications. The first observa-
tion from this figure is that as the deadline increases, the
algorithm chooses, on the average, fewer replicas to service
the client. The second observation from-this figure is that
the algorithm chooses a lower redundancy level when the
client requests a lower probability of timely responses. For

ity of timely
ity of timely resp

» a ilty of timely 0 R
038P, J

soct

02} . B

Observed Probability of Timing Failures

Client Deadiine (milliseconds)

Figure 5. Validation of the probabilistic model

example, in the first case in which the client specifies that at
least 90% of its responses should be timely, the algorithm
chooses a redundancy value as high as 6 to meet some of the
client’s requests. However, in the third case in which the
client is willing to tolerate any number of timing failures,
the algorithm chooses only a redundancy level of 2, which
is the minimum number of replicas selected by Algorithm 1.
The reason for these observations is that our algorithm never
selects more than the minimum number of replicas neces-
sary to meet a client’s QoS requirement. The less stringent
a client’s QoS specification, the higher the probability that
a chosen replica will meet the client’s specification. There-
fore, as the client’s QoS requirements become more flexi-
ble, the algorithm can satisfy them with fewer replicas.

Figure 5 shows how successful the selected set of repli-
cas, shown in Figure 4, were in meeting the QoS specifi-
cations of the second client. Figure 5 shows that when the
client specifies that the probability of timely responses must
be at least 0.9, the maximum probability of timing failures
we observe experimentally is only 0.08, which is lower than
the 0.1 timing failure probability that the client is willing
to tolerate. Similarly, for the cases in which the client is
willing to accept a failure probability up to 0.5 and 1, we
observe a maximum timing failure probability of 0.32 and
0.36, respectively, for the deadline values we used. These
results show that, in each case, the set of replicas selected
by Algorithm 1 was able to successfully meet the client’s
QoS requirements by maintaining the timing failure proba-
bility well below the failure probability that was acceptable
to the client. Thus, for the experimental runs we conducted,
the model we used was able to accurately predict the set of
replicas that would be able to meet the client’s deadline with
at least the probability requested by the client.

The above results show that at the expense of some com-

115

putational overhead, the dynamic selection scheme we have
described makes effective use of the available replicas to
meet the QoS specifications and thereby reduce the occur-
rence of timing failures, even when multiple clients ac-
cess a service at the same time. We believe that such a
replica selection scheme would be useful in an environment
in which time-critical clients access compute-bound service
providers that display variability in their response times.

7. Related Work

We now briefly mention a few of the related efforts that
address the problem of detecting and preventing timing fail-
ures for clients in a distributed system.

The DREAM project [11] provides an integrated object
based framework for tolerating crash faults, value faults,
and timing faults in a real-time, distributed system by using
a primary/backup replication scheme. While the DREAM
approach tries to prevent timing failures from occurring as
a result of replica crashes, it does not handle timing fail-
ures occurring due to the load induced when multiple clients
concurrently access a service. Our research goals are related
to the work done by Wolfe [22], which also addresses the
problem of meeting the time constraints when a CORBA
service is accessed by multiple clients. Their approach,
however, uses a global scheduling service that assigns a
global CORBA priority to a request, based on the timing
requirements expressed by the client. This priority is then
used to determine the order in which a server services the re-
quest. The work done by Wolfe does not, however, address
replica crashes. Verissimo and Casimiro have proposed a
general architectural construct called the Timely Computing
Base (TCB) [21] that can verify timeliness and detect time
failures, properties that are essential for building depend-
able and timely services. The timing fault handler we have
implemented realizes some of these properties for a repli-
cated service. '

8. Concluding Remarks

We have presented a new approach that tolerates tim-
ing faults in replicated services. This approach uses an al-
gorithm that chooses replicas dynamically at request time,
based on their ability to meet a client’s time constraints in
the presence of delays and replica crashes. An important
contribution of this paper is the definition of a probabilis-
tic model to predict, at runtime, the probability that the re-
sponse from a replica will arrive by a given time, based on
the performance updates the model receives from the replica
as inputs. This prediction made by a scheduler, which is
part of the timing fault handler, is used to select a set of
replicas that can meet a client’s timing constraint with at

least the probability requested by the client. We have im-
plemented the selection algorithm in AQuA, an infrastruc-
ture for building dependable distributed applications, and
obtained experimental results that show its efficacy. Our
model and selection algorithm can be easily extended to any
environment that provides replicated services and supports
a mechanism for tracking and recording the recent history
of the performance of its replicas.

We now mention a few extensions to our work. First, in
this work, we have assumed that the servers export a sin-
gle method interface to the client. It is possible to extend
our work to support the case in which a server exports mul-
tiple service interfaces. We can do this by modifying the
information repository to classify performance data based
on the method interfaces. The selection algorithm can then
use the performance information appropriate to the method
invoked. Second, in a system in which the middleware has
knowledge about an application’s request semantics, our se-
lection algorithm can be extended to distinguish between
requests made to the same server based on the arguments
passed by the clients. Our infrastructure currently does not
support this feature. Finally, our work can also be extended
to use active probes [5] when a replica’s performance infor-
mation is obsolete.

Acknowledgments: We are thankful to the anonymous
reviewers for their careful feedback, which helped us to im-
prove our work. We would like to thank Mouna Seri and the
rest of the AQuA team for their contributions to the AQuA
project. We are also grateful to Jenny Applequist for help-
ing us to improve the readability of the paper.

References

[1] K. Birman. Replication and Fault Tolerance in the ISIS Sys-
tem. In Proc. of the 10th ACM Symp. Operating Svstems
Principles, pages 79-86, December 1985.

R. Carter and M. Crovella. Dynamic Server Selection us-
ing Bandwidth Probing in Wide Area Networks. Technical
report, Boston University, BU-CS-96-007, 1996.

M. Cukier, J. Ren, C. Sabnis, et al. AQuA: An Adaptive
Architecture that Provides Dependable Distributed Objects.
In IEEE Symposium on Reliable Distributed Systems, pages
245-253, October 1998.

G. Fegg, K. Moore, J. Dongarra, and A. Geist. Scal-
able Networked Information Processing Environ-
ment. netlib2.cs.utk.edu/utk/people/
JackDongarra/PAPERS/snipe.html.

Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar.
A Novel Server Selection Technique for Improving the Re-
sponse Time of a Replicated Service. In Proceedings of IN-
FOCOM 98, March 1998. ’
P. Felber, X. Défago, P. Eugster, and A. Schiper. Replicating
CORBA Objects: A Marriage between Active and Passive
Replication. In Second IFIP International Working Confer-

2]

(3]

{41

(3]

[6}

116

(71

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

[20]

[21]

(22

ence on Distributed Applications and Interoperable Systems
(DAIS’99), pages 375-387, Helsinki, Finland, June 1999.

R. Guerraoui and A. Schiper. Software-Based Replication
for Fault Tolerance. [EEE Computer, pages 68-74, April

1997.
M. Hayden. The Ensemble System. PhD thesis, Cornell Uni-

versity, January 1998. www.cs.cornell.edu/Info/
Projects/Horus/Papers.html.

J. Heidemann and V. Visweswaraiah. Automatic Selection
of Nearby Web Servers. Technical report, University of

Southern California, USC TR 98-688, 1998.

E. Katz, M. Butler, and R. McGrath. A Scalable HTTP
Server : The NCSA Prototype. Computer Networks and
ISDN Systems, 27:155-164, 1994.

K. Kim and C. Subburaman. ROAFTS: A Middleware
Architecture for Real-Time Object-Oriented Adaptive Fault
Tolerance Support. In IEEE High Assurance Systems Engi-

neering, pages 50-57, Nov 1998.
M. C. Little. Object Replication in a Distributed System.

PhD thesis, University of Newcastle upon Tyne, September
1991. ftp://arjuna.ncl.ac.uk/pub/Arjuna/

Docs/Theses/TR-376-9-91_EuropeA4.tar.Z.
Microsoft. Microsoft Windows Active Directory: An

Introduction to the Next Generation Directory Ser-
vices. Technical report, Microsoft Corporation, 1999.
msdn.microsoft.com/library/backgrnd/

html/msdn_actdirintro.htm.

L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A
Fault Tolerance Framework for CORBA. In Proceedings of
the IEEE International Symposium on Fault-Tolerant Com-
puting, pages 150-157, June 1999.

OMG. CORBA Object Request Broker Architecture-Version

2.2. www.omg.org/docs/orbos.
J. Ren, M. Cukier, and W. H. Sanders. An Adaptive Algo-

rithm for Tolerating Value Faults and Crash Failures. IEEE
Transactions on Parallel and Distributed Systems, Special

Issue on Dependable Network Computing, To appear.
P. Rubel. Passive Replication in the AQuA System. Master’s

thesis, University of Illinois at Urbana-Champaign, 2000.

www .crhc.uiuc.edu/PERFORM.
C. Sabnis, M. Cukier, J. Ren, et al. Proteus: A Flexi-

ble Infrastructure to Implement Adaptive Fault Tolerance in
AQuA. In [FIP International Working Conference on De-
pendable Computing for Critical Applications, pages 149—
168, January 1999.

M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek.
Selection Algorithms for Replicated Web Servers. In Work-
shop on Internet Server Performance, June 1998,

A. Vaysburd. Building Reliable Interoperable Distributed
Applications with Maestro Tools. PhD thesis, Cornell
University, May 1998. www.cs.cornell.edu/Info/
Projects/Horus/Papers.html.

P. Verissimo and A. Casimiro. The Timely Comput-
ing Base. Technical Report TR-99-2, Univ. of Lisboa,
May 1999. www.navigators.di.fc.ul.pt/docs/

abstracts/tcbmodel.html.
V. Wolfe, L. Dipippo, R. Ginis, M. Squadrito, S. Wohlever,

and 1. Zykh. Expressing and Enforcing Timing Constraints
in a Dynamic Real-Time CORBA System. Real Time Sys-
tems, 16:253-280, 1999.

