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Abstract—We consider a real-time task model where a task receives a “reward” that depends on the amount of service received
prior to its deadline. The reward of the task is assumed to be an increasing function of the amount of service that it receives, i.e., the
task has the property that it receives increasing reward with increasing service (IRIS). We focus on the problem of on-line
scheduling of a random arrival sequence of IRIS tasks on a single processor with the goal of maximizing the average reward
accrued per task and per unit time. We describe and evaluate several policies for this system through simulation and through a
comparison with an unachievable upper bound. We observe that the best performance is exhibited by a two-level policy where the
top-level algorithm is responsible for allocating the amount of service to tasks and the bottom-level algorithm, using the earliest
deadline first (EDF) rule, is responsible for determining the order in which tasks are executed. Furthermore, the performance of this
policy approaches the theoretical upper bound in many cases. We also show that the average number of preemptions of a task

under this two-level policy is very small.

Index Terms—Real-time systems, on-line scheduling, deadline based scheduling, priority scheduling, reward functions for tasks,

maximizing reward rates.

1 INTRODUCTION

N a classical hard real-time system, each task must com-

plete execution before its specified deadline. Failure of
the system to complete a task by its deadline leads to a
timing-fault and the results of the computation (if any) are
discarded [1]. Implicit in such systems is the assumption
that a task’s computation is useless unless the entire com-
putation is completed within the specified deadline.

Recently, a new class of real-time applications has
emerged in which the value of a task’s computation in-
creases as a function of the amount of execution time it has
been able to accrue before its deadline expires. We refer
such tasks as IRIS (Increasing Reward with Increasing
Service) tasks, since the longer a task is able to execute
(before its deadline), the higher is the quality of its compu-
tation. Tasks exhibiting IRIS behavior have been referred to
in the literature as “anytime algorithms” [2], [3], [4], “real-
time approximate processing algorithms” [5], or
“segmented algorithms” [6]. Examples include tasks that
receive, enhance or transmit audio, video or images com-
pressed using MPEG-2 or other scalable techniques [7], [8],
[9], [10], tasks for tracking and control, e.g., autonomous
vehicle navigation planning [11], tasks for heuristic search
[12], [13], tasks for database query processing [14], [15],
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medical decision making [16], and tasks computing tradi-
tional iterative-refinement numerical algorithms. Methods
of construction of “anytime algorithms” as well as detailed
examples of “anytime algorithms” are included in [17].

Within the framework of the IRIS model, we study the
problem of scheduling IRIS tasks in a single processor envi-
ronment, where IRIS tasks arrive into the system at arbi-
trary instances of time and provide the scheduler with their
deadlines and their reward functions. The main contribu-
tions of this paper are:

e The design and evaluation of three on-line scheduling

policies for the case that the task reward functions
(i.e., functions which specify the value of a computa-
tion as a function of its accrued execution time) are
nondecreasing and concave. The first two policies
consist of a top-level algorithm that executes at task
arrival times to determine the amount of service to be
allocated to each task and a bottom-level algorithm
that determines the order in which tasks execute. Both
policies use the same top-level algorithm and differ
only in the rule used to schedule tasks at the bottom
level. The third policy is a (single level) greedy
scheduling policy.
We note that the top-level algorithm alluded to above
is of independent interest as it solves the static prob-
lem of maximizing the reward rate for a set of tasks
that arrive at the same time.

¢ The computation of a theoretical upper bound on the
performance of any IRIS scheduling policy.
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o The demonstration that the two-level policy that uses
the earliest deadline first (EDF) rule for scheduling
tasks into service achieves performance close to the
upper bound and better than that of either of the
other two policies. It is also shown that the average
number of preemptions of a task under this two-level
policy is small.

In order to place these results in their appropriate con-
text within the very large body of past scheduling research,
we first distinguish between job shop scheduling [18], [19]
and on-line scheduling of jobs. In the former case, a fixed
set of jobs must be scheduled. Typically, no new jobs arrive
to the system, and each job has an execution time—the
amount of time needed by a job until it is completed by the
system. In the latter case, new jobs may continue to arrive
(and hence must be scheduled) while the system is operat-
ing. Again, each job has an associated execution time. As
noted earlier, real-time scheduling is further characterized
by the fact that jobs have deadlines by which time their exe-
cution must be completed. Overviews of scheduling work
that include discussion of real-time systems can be found in
[1], [20], [21], [22]. '

Our present work falls broadly in the second category
but differs from traditional on-line scheduling in that IRIS
tasks do not have specific execution times. Instead, as noted
above, a task simply receives whatever service time it can
accrue before its deadline expires. The reward function of
an IRIS task (informally, the “value” of the task as a func-
tion of its accrued execution time) is typically a nonde-
creasing concave function of its execution time., reflecting
the decreasing marginal reward a task sees as it receives
more service [2], [4], [16].

Several papers have reported studies on real-time task
models similar to the IRIS model. The imprecise computation
model has generated a large body of work [23], [24], [25]. In
this model, tasks have a mandatory phase with a certain
known processing time' which has to be completed before
the task is of any “value,” and an optional phase with a
known processing time which can be left unfinished. Each
task incurs an error equal to the amount of the optional
phase that is left unfinished. Thus after the mandatory
phase of the task is completed, the quality of each task is
assumed to be a linear function of the amount of processing
time that it receives. Furthermore, all tasks are character-
ized by identical “error rates.” We show in Section 6 how
our scheduling mechanism can easily be adapted to handle
tasks with explicitly defined mandatory phases. As noted
before, the IRIS model does not require explicit knowledge
of processing times of tasks, whereas in the imprecise com-
putation model [23], [24], [25], tasks have known process-
ing times. Note that the metric in IRIS of maximizing re-
ward rate is analogous to the performance metric of mini-
mizing error in the imprecise computation model.

For time-dependent path planning of robots [3], [4],
Boddy and Dean consider a static system where a fixed set
of tasks have to be scheduled. The tasks exhibit IRIS be-
havior. In their model, the processing times of tasks are

1. Here known processing time of a task implies that when the task arrives
to the system, its processing time is explicitly known.

multiples of a fixed time slice, i.e., it is a discrete-time ver-
sion of the IRIS task model. They design an off-line sched-
uling policy to schedule tasks in this static system. The
complexity of their scheduling algorithm is inversely pro-
portional to the size of the time slice, and hence its running
time increases with the fineness of the time slice, whereas
the complexity of the IRIS scheduler depends only upon the
number of tasks.

In a different model of imprecise real-time systems, tasks
do not have deadlines, but each task provides several ver-
sions, a primary version, which produces a precise result but
requires the maximum execution time of all the versions,
and several alternate versions, which provide poorer quality
results but execute for shorter times. The scheduling policy
switches from primary versions of tasks to alternate ver-
sions when the total number of tasks in the system exceeds
a threshold. Kim and Towsley [26] study this model in the
context of real-time message transmissions, while Chong
and Zhao [27] and Zhao, Vrbsky, and Liu [28] analyze two-
version scheduling disciplines for this model in uniproces-
sor and multiprocessor systems respectively. The optimal
scheduling policy for such a uniprocessor system was
shown to be of a threshold type in [29].

Finally, we note that the framework for scheduling and
planning of manufacturing systems which has been pro-
posed by Gershwin [30] in which decisions and events in a
production systems are grouped into various levels of hier-
archy depending on their characteristic time-scales. Our
two-level policies fit into Gershwin’s scheduling frame-
work. However they do not correspond to any of the algo-
rithms that he describes.

The remainder of this paper is organized as follows.
Section 2 describes the IRIS uniprocessor task system along
with some attendant notation. Section 3 describes the pro-
posed scheduling policies in detail. Section 4 develops an
analytical model of IRIS tasks executing on a single proces-
sor and presents the upper bound on any scheduling pol-
icy. Section 5 presents the numerical results. Section 6 dis-
cusses extensions to the model to handle tasks with man-
datory phases and Section 7 concludes the paper with a
discussion of possible future research.

2 System Model
In this section, we describe the IRIS task model and the
system on which they execute.

We consider a single processor system servicing a stream
of tasks that arrive to the system at arbitrary times a; < a, <
.... Consider the ith task, i = 1, 2, .... Associated with itis a
laxity t; > 0 and a nondecreasing concave reward function f;
: R, — R. This task accrues a reward of f(x) upon receiving
x units of service and is required to leave after its laxity ex-
pires, at time 4; + ¢, referred to as its deadline.

The tasks present in the system are served according to
some scheduling policy z. The only assumption made re-
garding 7 is that it is nonanticipative, i.e., it does not have
knowledge of future arrival times or of the deadlines asso-
ciated with future tasks. Otherwise, it is permitted to take
any action including idling the processor or preempting
tasks that are in service.
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Under 7, task i receives Af units of service and accrues a

reward of fi(Ai” ). The performance metric of interest to us is
the long term reward rate given by

Nl Vi
y”* = lim inf _21-:1{1‘(/“7' ),

=00

where N, is the number of arrivals by time t > 0.

3 SCHEDULING POLICIES

The problem of determining a good scheduling policy for
an online IRIS task system is difficult. Even in the case
when tasks do not arrive dynamically and there is a finite
number of tasks in the system at time t = 0 with arbitrary
deadlines it is easy to show that the problem of determining
an optimal policy for maximizing the total reward is, in
general, NP-hard. In this section, we propose heuristic poli-
cies which provided demonstrably good performance. First,
we propose a class of two-level scheduling policies. Each
policy consists of a top-level algorithm which is executed
each time that a task arrives and is used to determine the
amount of service to allocate to tasks, and a lower-level
algorithm that is concerned with the actual selection of
tasks to execute. Policies within this class use the same
high-level algorithm but differ in the particular rule for se-
lecting tasks for service. We also consider a single level
greedy policy, which is derived based on intuitions gained
during the design of the top-level algorithm used by the
two-level policies.

3.1 Two-Level Scheduling Approach

The top-level scheduling algorithm is invoked at every task
arrival. It allocates service time to tasks with the objective of
solving the following static nonlinear optimization problem:
Given a set of tasks resident in the system with known
deadlines and reward functions, determine the amount of
service to allocate to each of them so as to maximize the
total accrued reward. In a static scenario, where tasks do
not arrive to the system dynamically, maximizing total ac-
crued reward is equivalent to maximizing the reward rate.
In this implementation, the algorithm that solves this
problem executes under the assumption that there are no
future arrivals. This static problem and several of its prop-
erties are described in Section 3.1.1 and its solution algo-
rithms are presented in Section 3.1.2.

The lower-level algorithm actually schedules the tasks into
service and attempts to provide them with the allocations
determined by the top-level scheduler. However, the amount
of execution time that each of the tasks actually receives de-
pends upon the time of the next task arrival. Note also that
the target service allocation may change at each arrival. We
have experimented with the earliest-deadline-first algorithm
and the first-come-first-serve algorithm as the lower-level
policy. We discuss these in Section 3.1.3.

3.1.1 Formulation of the Problem with a Static Set of
Tasks

In this subsection, we develop a static version of the prob-

lem where all tasks arrive at the same time. While such a

simultaneous-arrival assumptiog/is in itself restrictive, it
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can be used as the top-level computation of the two-level
scheduling approach described above.

Consider a finite set of M tasks with identical arrival times
a,=m,=... = ay=aand deadlines 77 < ... < 7},. For notational
convenience, we define 7{ = a. The interval (a, 7},] is divided
into at most M intervals (a,77l,(z], 751, ..., (¢}, T3]. As
shown in Fig. 1, interval j refers to the interval (’L’}_l,‘[;].
When the ith task departs, if it has received x units of serv-
ice, it receives a reward of f(x), with its derivative defined to
be g,(x) = dfix)/dx. The inverse function of g(x) is ¢ (x),i=
1, ..., M. The reward functions are assumed to be continu-
ous and g_l is assumed to be a function in the rest of this
paper.

~— Interval number
3/ M-1, M

| | Jsf | |
T U5 ) Trs

-1 T

Fig. 1. A time interval showing task deadlines and interval numbers.

A schedule determines the amount of service to be given
to each task during each interval. A schedulable interval of a
task is an interval in which the task can be scheduled, i.e., it
is an interval between the task’s arrival time and its dead-
line. Thus the schedulable intervals of task i are intervals 1
through i. The set of schedulable tasks in an interval j is the
set of all tasks {j, j + 1, ..., M} which can be scheduled in
interval j.

Let x;; denote the service time allocated to task 7 during
intervalj,j=1,...,i,i=1, ..., M. Observe that x;=0 when-
ever j > i. The total amount of service allotted to task i is
defined by

i
v =Y,
j=1
Given a set of tasks, we are interested in finding an as-
signment of service times to tasks which maximizes the

sum of the rewards of all the tasks while satisfying the
above constraints. Thus our problem, P, is:

Mo i
maximize Zﬁ zxi il
=1\ j=1

subject to

T}—T;il, ji=1 ... M,
>0, 1<j<i<M.

M
zi:]‘ %ij

X
The first constraint equates the length of the jth interval
to the amount of service allocated to all of the schedulable
tasks in that interval. Note that this implies that the proces-
sor is never idle during the interval [7{,7},]. The second
constraint simply states that a task is allotted a non-
negative amount of service in each of its schedulable inter-
vals. Thus the problem is to maximize a concave objective
function with M equality constraints and M(M - 1)/2 ine-
quality constraints. This is a special case of a general re-
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source allocation problem in which the returns from an ac-
tivity is a concave function of resources allocated to it, and
the goal is to obtain an allocation of resources to activities
such that the objective function is maximized. Mjelde [31]
has discussed several properties of this problem.

The following Kuhn-Tucker conditions [32] are satisfied
by any optimal solution to P. 4 denotes the Lagrange mul-
tiplier for task j in P.

Glx)=u;, 1<j<isM, x

;> 0, M

and
glx)sm, 1<j<isM, x,=0 @

Equation (1) indicates that tasks receiving a nonzero
service allocation in an interval j have the same value for
the derivative of their reward functions, i.e., have the same
marginal reward. Tasks which do not receive service allo-
cation in interval j cannot have a larger value of their re-
ward function derivative as shown in (2), as it should be
possible to serve these and provide a lower reward.

Let x; be the amount of service time assigned to task i in
any optimal solution. xl ; 1s the service-time allocation to
task i in interval j in any optimal solution. Define

x = [xu,xlrz, ...,xM'M]

to be an optimal solution to P. Let X be the set of all optimal
solutions to P. The following two lemmas are proved in the
appendix.

LEMMA 1. Any X" e X satisfies the relations,
D if 3 interval k s.t. x;, >0 and xj; >0, then
g, (x) = gf-(x;), 1<k<i, j<M.
2)if 3 interval k st x>0 and x;, =0,
g;(x)) 2 g,.(x;.‘),lsksi,jSM.

3)if x; =0, then Yie 1,2, .., =1 st x >0,

then

&%) 2 g;(x)).
4) if 3task ks.t. x> 0 and x>0, then 4= p;, 1<,
j<k<M.
LEMMA 2. For every Xex

1) The Lagrange multipliers y; form a monotonically non-
increasing sequence, i.e., i > i1, 1 <i <M,

2) x' can be constructively transformed into X" e X, such
that for all of the tasks i that receive service in x*, the

. . % . .
corresponding gss in x are monotonically nonincreas-
* * 0
% >0.

ing, ie, g>g,1 <i<j<M, x
According to the above lemmas, the optimal solution in
any single interval j can be derived by simply choosing the
tasks whose reward functions have the highest derivative
values and allocating them service till the interval length is
consumed. The next theorem shows how we can use this
method iteratively to generate an optimal solution to P. We
introduce an auxiliary optimization problem P, 1 <i < M.
Here P; is a subproblem of P with tasks 7, i + 1, ..., M all

having the same arrival time of 7_;. Problem P; is equiva-
lent to problem P. The solution algorithm for P sequentially
solves problems P, i = M, ..., 1. Problem P is:

M (&
maximize 2]‘, Zxk il
k=i \ j=i
subject to

=T =Ty, j=i ..M,
1<j<k<M.

P
k=j *k,j

Xy j >0,

The following theorem describes a property satisfied by

any optimal solution to problem P. The top-level algo-

rithms described in the next subsection utilize this property
to guarantee an optimal solution to problem P. Define x;(’)
as the service time assigned to task j in the optimal solution
(@)

for problem P;. Similarly, 4;” denotes the Langrange mul-

tiplier for task j in P;.

THEOREM 1. Let the optimal solution to problem P, allocate
service time x;f(”l) to task j. Let K be the set of tasks which
receive nonzero allocation in the interval (T_y, 7] in the
optimal solution to P, ie., K = {k| x:(”l) < x,:(i)}. Then
the optimal solution to P, satisfies:

& (1) = X v -y

ke X keX
where uﬁf) = u® is the value of the Langrange multiplier
for all tasks k € Kin P;.

PROOF. Since the processor is never idle while tasks have
not reached their deadlines,

(1) (i+1)\ _ . ,
Z("k - X ) =T~ T
ke X
or
DA WA AL A ®)
keX keX

Applying Lemma 1.1 to interval (t/_,, /] we know that
all tasks k € X have the same value of g and 1
Lemma 2.2 indicates that the remaining tasks in P;

may have lower g and 4? values. Therefore, (3) is re-

written as:
= i ({41 ’ ’
zgkl(#(l)) = zxk(l+ '+ Ti =T @
keX keX

O

REMARK. As stated, P assumes that policies are nonidling.
However, it is a simple exercise to show that, even if
this is relaxed, it never pays to idle the processor
when the reward functions are nondecreasing.

3.3.2 Top-Level Scheduling Algorithm

This subsection presents the algorithm which computes the
optimal service time allocations for task sets. This algorithm
uses the results of Theorem 1 to determine the values of x;
that solve problem P.
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1. initialize

L=0
x;=0, Vi
2. loop

form = M downto 1 do
Insert g,,(0) into L. Order the tasks in £ in
decreasing value of g;.
Let 7 (i) denote the task within £ with the
ith largest g0).
Using a binary search, find [ s.t.

ZE {g;b)(gm(xm)) - xﬂ(i)] =

’ ’
Ty Tl 2

21’:1 [8;2@(3: (1)) - xnm]

Solve for g in

’ - l 7’ 7
zz‘=1 gnzw(”) = Zi:l xfr(i) Tl T T

Y@ = g;?i)(ﬂ)/ i=1,..., L

(%)

Fig. 2. Algorithm for general reward functions.

The algorithm, given in Fig. 2, solves P; in the jth itera-
tion in step 2. In this jth iteration, task j becomes schedula-
ble, and hence is added to a list £, in which the elements are
ordered in decreasing values of their derivatives. Then a
binary search is performed on this list of schedulable tasks,
computing how many of these tasks can actually be sched-
uled using the condition outlined in the theorem. The
search finds a number [ such that the / tasks with the high-
est reward rates will be allocated additional service from
(771, 77]. The value of u is then computed using (4) from

which the values of the x\"’s are obtained.

In this version, computing each sum during the binary
search takes time O(M) and there are O(log M) probes done in
the binary search. Thus each iteration takes time O(M log M)
and the running time of the algorithm is o log M).

This algorithm can be improved by grouping tasks hav-
ing the same derivatives into a single set. This improved
algorithm then maintains values of the summands in line
() of Fig. 2 for each of the sets and otherwise executes the
previous algorithm on the sets. The ability to maintain pre-
computed values of the sum permits a reduction in the
running time of the algorithm to O(M?). When tasks have
exponential reward functions, the scheduling complexity
reduces further to O(M log M). Complete descriptions of
these algorithms can be found in [33].

3.1.3 The Lower-Level Policy

The purpose of the lower-level algorithm is to actually
schedule tasks using the service time allocation information
computed by the top-level policy. In the absence of future
arrivals, it executes every task for its allocated time. If an
arrival occurs, then the top-level policy is executed again.
There are many ways that the tasks can be scheduled once
their service allocations are known. In the presence of arri-
vals, different policies will perform differently. In this sec-
tion, we study two representative lower-level policies, ear-
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liest deadline first (EDF) and first come first serve (FCFS),
and compare their performance.

The rationale for choosing EDF and FCEFS is that they are
simple, and generate very few preemptions per task. A po-
tential disadvantage is that in the presence of task arrivals,
these policies favor tasks with earlier deadlines and arrival
times respectively, and thus the marginal reward rates of
tasks may not be balanced as in (1) at the time of a new task
arrival.

Intuitively, we would not expect FCFS to perform as
well as EDF for the following reason. The allocations of the
top-level policy satisfy the first constraint of the optimiza-
tion problem P. Therefore, for a static set of tasks, it is triv-
ial to show that EDF is guaranteed to accord each task the
service time allocated to it by the top-level policy [34].
FCFS, however, cannot provide that guarantee. Fig. 3
shows an example where FCFS is unable to provide the top-
level policy’s allocation to every task. There are two tasks,
numbered 1 and 2, with [4,, 5] = [0, 3], [4,, ] = [1, 2], as
shown in Fig. 3.i. Fig. 3.ii depicts the linear reward func-
tions of the two tasks with reward rates ¢, = 1, g, = 2.
Fig. 3.iii shows the top-level policy’s allocation decisions
made at times t = 0 and f = 1. At time t = 0, task 1 receives
all three units of allocation, and at time t = 1, both tasks
receive one unit allocation. But FCFS schedules task 1 in the
time-interval (1, 2], as shown in Fig. 3.iv which causes task
2 to leave the system without receiving any service. The
processor is left idle in time-interval (2, 3]. The schedule
under EDF is shown in Fig. 3.v as a comparison.

ES

allocation
[

o
I}
<
Il
=)

e ;‘
time ——s time =t =1

0 t
(i)

EE task 1 allocation

%5  E— S
=0 =1 =2 t=3 =0 =1 =2 =3 B task 2 allocation

FCFS schedule EDF schedule
(iv) W)

Fig. 3. FCFS vs. EDF scheduling.

3.2 Greedy Policy

The intuition behind the top-level policy is to allocate service
times to tasks that return high reward rates. Equation (1), the
condition for optimality, and Theorem 1 indicate that the
incremental reward rates of the serviced tasks are to be bal-
anced subject to the constraint of task deadlines. Thus, we
consider a policy that executes tasks in such a way as to
keep the marginal reward rates as equal as possible. This
policy is greedy because it maximizes the instantaneous
reward rate by prioritizing tasks on the basis of their mar-
ginal rewards. This policy, a simple variation of the proces-
sor sharing policy, is called the balanced reward processor
sharing policy (BRPS). Although it is an idealized and un-
implementable policy, can be approximated by a round
robin policy. Its drawback is that it would be characterized
by a large number of task preemptions. Note that instead of
doing a global optimization as is done by the top-level al-
gorithm when scheduling a set of tasks with identical arri-
val times, this greedy policy achieves a local optima in
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every interval (T;_l,r}] in Fig. 1. When arrivals are fre-

quent, this greedy approach of reward maximization could
yield higher reward rates than using FCFS or EDF in the
two-level policy, for reasons outlined in Subsection 3.1.3.
On the other hand, it can be easily shown that, for a set of
tasks with identical arrival times, combining local optimum
solutions in this manner does not lead to a globally opti-
mum solution. Section 5 contrasts the benefit of doing
global optimization assuming no future arrivals and then
scheduling tasks using a simple lower-level policy, versus
scheduling to achieve local optimas using this greedy
method. ‘

4 ANALYTICAL MoDEL AND UPPER BOUNDS

In this section, we develop an analytical model of an IRIS
task system and obtain upper bounds on the reward rate
that is achievable by any scheduling policy in this system.

The task system is modeled as a single server system
servicing K > 0 classes of tasks, labeled k = 1, ..., K. Tasks
from class k arrive to the system at arbitrary times accord-
ing to a stationary process with rate 4. We further assume
that the laxities for the different task classes form mutually
independent sequences of independent and identically
distributed (i.i.d.) random variables (r.v.s) with means
Elgl, k=1,2, ..., K. Associated with a class k task is a non-
decreasing concave reward function f,: R, — R, and a task
of this class accrues a reward of f,(x) upon receiving x units
of service. Observe that the reward function depends on the
task class but not on the identity of the task.

Denote the service time accrued by task i of class k under a

policy zby A/, and the associated reward by R, = fi(A{))

with means E[A7] and EIR;], respectively. Denote the
service time accrued by a randomly chosen task and a ran-
domly chosen class k task by A and A, respectively. We

only consider policies such that Ry = lim, ,_ Rf; exists Vk.

p

We are interested in the average reward per task, E[R”],

and the average accrued reward per unit time, ¥ = AE[R"],
K

where A = Zk:l Ay

We now derive two upper bounds on the reward rate for
any such policy. The first upper bound makes no assump-
tion regarding the arrival process while the second upper
bound requires that the tasks arrivals be described by Pois-
son processes. The latter upper bound is tighter than the
first.

The average reward per task of any scheduling policy is
defined as:

)= 3 3 e[Rt)
- g%E[fk(A;f)],
<> 5 alefar))

using Jensen’s inequality [35].

Thus the average reward per unit time for any schedul-
ing policy is bounded by:

v < 3 aA(EA)
1
i )

f the following non-linear optimi-

IA
QT

where Q% is the solution
zation problem:

o]

K
maximize Y Af(v,),
=

subject to

K .
kzl/lkyk =C, j=1,..M,

Yy 20, 1<k<K,

forany C2 3 AFIA].

When the arrival processes of each task class is com-
pletely general, the system can be modeled as a G/G/
queue. This is due to the fact that every task departs from
the system at its deadline, irrespective of the number of
other tasks that are present in the system at its arrival time.
In this case we are unable to obtain an exact expression for

Z:ﬂ 2ElA]. However, we have the following bound:

Y AHA] <
k=1
1, 1A < 1/,1(2;1 ZkE[TkD,

; ’lkE[‘[k]), otherwise.

(6)

The first term corresponds to the server never being empty,

whereas the second term corresponds to a system in which

there is never any overlap of different tasks in the system.
When the arrival process is Poisson, we can derive an

exact expression for zle AELA.]. Let B denote the length
of a M/G/ee busy period. Let E [N®] and EIN ,Eb)] denote the
expected number of tasks and the expected number of tasks
of class k served in a busy period, E[N,Eb)] = %E[N(b)],
k=1, ..., K. The number of tasks in the system, N, is a Pois-
son r.v. with Pr[N = un] = p" ¢?/nl, n = 0, 1, ..., where
p= ZkK:l AElt,]. Therefore:

i B[N E[ 4] = E[B]. @)

k=1
The mean number of tasks served in a busy period is given
by EIN"]= AE[B] + 1/4) which, when substituted into (7)
yields
: F[5]
> MEA] =
pot E[B]+ 14

Now, Pr[N = 0] can also be expressed in terms of E[B] as
prIN = 0] = gt which yields E[B] = (¢ ~1)/4. Thus,
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K
Y AEHA]=1-¢7. ®
k=1
The two optimization problems are solved using algo-
rithms similar to the one presented for problem P.

5 NUMERICAL RESULTS

In this section, we examine the performance of our sched-
uling policies. We have used two metrics to quantify the
performance of our policies:

¢ The reward rates generated under a policy. This is
the basic metric to evaluate a policy that schedules
IRIS tasks.

e Task preemptions in a processor leads to context
switch overheads which reduce the available proces-
sor time to execute tasks. Hence the second metric
that we have used is the average number of times
that a task is preempted by another task under a
policy.

To evaluate the policies, we simulate a uniprocessor sys-
tem with two classes of tasks arriving to it. The reward
function for a class k task is of the form f, (x) =1- eiakx, k=
1, 2. The motivation for using exponential reward func-
tions come from Dean and Boddy [4], [2], who have em-
ployed an IRIS algorithm for time-dependent planning
problems, that has an exponential reward function. Hor-
vitz [16] also has described IRIS computations with expo-
nential reward functions.

The independent parameter we have used for our simu-
lations is the processor utilization U, a measure of the proc-
essor load, due to the combination of two task classes. Us-
ing this as the independent parameter allows us to examine
the performance of our scheduling policies under various
processor loads.

The arrival process and laxity distribution of class k are
Poisson with rate 4, and exponential with parameter 7,

respectively. We define p, = A4E[%]. From Section 4, we
know that the probability of there being no tasks present in

this system is P[N = 0] = ¢ Hence, the processor utiliza-
tion, or the fraction of the time that the processor is busy, is
given by U =1 - e’ Analogously, 1—¢ " represents the
load on the processor owing to class k tasks.

We have performed simulations with 48 different pa-
rameter sets, by varying task arrival rates, laxity parameters
and reward rates. The simulations have been performed by
varying ratios of p, p,, (0,/p, = 0.5, 1, 2, 4) and ratios of &,
&, (8/6,=2,3,5,10). Class 1 thus corresponds to the class
with the higher reward rate. Varying the ratio p,/p, allows
us to examine the performance of the policies at various
load mixes of higher reward rate and lower reward rate
tasks. For each value of p,/p,, we have varied the ratio of
Eln] and Elg] (Elnl/El7] = 1, 2, 4). Note that 4/, =
PE[5]/ pEl7]. In all simulations, the numerical values as-
signed to & and E[z] are 0.4 and 10, respectively. The val-
ues of 4; and A4, are computed using the value of U. Each
point estimate is the average of 19 replications, each con-
sisting of 50,000 task completions. The 95% confidence in-
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TABLE 1
COMPARISON BETWEEN PERFORMANCE
oF EDF, BRPS, anp FCFS PoLICIES

vl ¥ 7 7 N 4
0.05 | 0.0044 0.0044 0.0044 | 0.0016 0.0016 0.0016
0.10 | 0.0089 0.0089 0.0089 [ 0.0033 0.0033 0.0033
0.20 | 0.0189 0.0188 0.0187 | 0.0071 0.0071 0.0067
0.30 | 0.0301 0.0299  0.0292 | 0.0113 0.0113 0.0109
0.40 | 0.0430 0.0426  0.0407 [ 0.0162 0.0161 0.0152
0.50 | 0.0581 0.0573 0.0532 [ 0.0219 0.0218 0.0199
0.60 | 0.0764 0.0751 0.0667 | 0.0289 0.0288  0.0251
0.70 | 0.0994 0.0973 0.0817 | 0.0379 0.0377 0.0307
0.80 { 0.1307 0.1275 0.0987 [ 0.0505 0.0501 0.0373
0.90 | 0.1806 0.1758 0.1198 [ 0.0717 0.0710  0.0457
0.95 | 0.2253 0.2197 0.1342 [ 0.0923 0.0914 0.0518

Parameters: 1,/4,=05,%/5,=1, p,/p,=05,6,/6=>5

vl 4 7 Sl v A
0.05 | 0.0172 0.0172 0.0172 | 0.0163 0.0162 0.0162
0.10 | 0.0354 0.0352 0.0351 0.0334  0.0333  0.0331
0.20 | 0.0746 0.0742 0.0725 | 0.0705 - 0.0700 0.0684
0.30 | 0.1188 0.1176 0.1118 | 0.1122  0.1111 0.1054
0.40 | 0.1693 0.1669 0.1527 | 0.1600 0.1577 0.1436
0.50 | 0.2280 0.2238 0.1947 | 0.2157 0.2117 0.1828
0.60 | 0.2981 0.2914 0.2374 | 0.2825 (0.2760 0.2223
0.70 | 0.3852 0.3751  0.2802 | 0.3659 0.3558 0.2615
0.80 | 0.5004 0.4860 0.3225 | 0.4775 0.4625 0.2992
0.90 | 0.6746 0.6560 0.3619 | 0.6494 0.6282 0.3319
0.95 | 0.8207 0.8020 0.3785 | 0.7969 0.7739 0.3431

Parameters: A,/ 4,=16, 5,/ 5.=4, p/p, =4, &/ 5 =5

terval half-width are less than 1 percent of the point value
in all the simulation results. We present a few representa-
tive results of the 48 simulations for each of the metrics.

The first set of results, tabulated in Table 1, illustrates,
the difference between using EDF and FCFS in conjunction
with the top-level policy and the BRPS policy. Although we
have tabulated and analyzed the results of only two simu-
lations, we emphasize that all the other simulation results
yield similar conclusions. For these simulations, the proces-
sor utilization U varies between 0.5 and 0.95. The tables list
the average reward rates attained by scheduling both
classes of tasks, and the reward rate attained by the class 1
tasks. The reward rate of class 2 tasks is the difference be-
tween the cumulative reward rate and the class 1 reward
rate. The first three columns, ¥*, ¥*, and ¥*, tabulate the
reward rates attained by using EDF, BRPS, and FCFS poli-
cies. The next three columns tabulate the corresponding
class 1 reward rates. For very low processor utilizations
(U < 0.4), the reward rates attained by all three policies are
the same. In this region, the task arrival rate is very low and
a typical busy period consists of only one task. Hence each
task gets executed till their deadline under any policy.
When U is higher, using EDF as the lower-level policy in
the two-level scheduling approach provides the best re-
ward rate. The performance of the BRPS policy comes very
close, with " always remaining within 97% of . As ex-
pected, the FCFES policy yields much smaller reward rates.
Analyzing the class 1 reward rates leads to the same con-
clusions. Taking into consideration that processor sharing is
an idealized abstraction of the traditional round-robin algo-
rithm under which the number of preemptions is a much
higher than under EDF, we prefer the combination of the
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top-level algorithm and EDF over BRPS. Note that the
number of preemptions under FCFS is also very small, and
the primary reason for lower reward rates under FCFS is
the idling of the processor as shown in Fig. 3, even when a
task has not reached its deadline. This can be ameliorated
by modifications to the two-level policy so that the top-
level policy is re-executed when such a situation occurs.
The modifications will result in a policy that generates bet-
ter reward rates, but at the cost of additional scheduling
complexity. Considering that the reward rates achieved
using EDF in the two-level policy is extremely close to the
upper bounds as shown in the next paragraph, we regard
EDF as the lower-level algorithm of choice. For all the other
graphs in this section, the performance numbers reported
are for EDF.

Fig. 4 compares the upper bounds and the reward rates
achieved by our two-level scheduling policy with EDF as
the lower-level algorithm. We analyze three graphs with

p/p,=05,1, and 4, representing systems where the class 1
load is less than, equal to, and greater than the class 2 load
on the processor. In all the graphs, 6,/ = 5. The processor
utilization, U, is varied between 0.5 and 0.998. yéb and yuMb
are the upper bound curves for tasks with general arrival
patterns and Poisson arrivals, respectively. ¥ %, and » rep-
resent the cumulative reward rate, the class 1 reward rate
and the class 2 reward rate. There are several interesting
aspects to this figure. First, although y”Mh is tighter than ygb
as noted in Section 4, the difference between them is mar-
ginal. In fact, the two curves are virtually identical for U
less that 0.1 and greater than 0.95. As U — 1, (6) and (8), the
constraints of the two upper bound optimization problems
in the previous section, become identical. When U — 0,

then 4 — 0, which in turn implies Q’r in (5) tends to zero.
This explains the convergence of the two curves at their
endpoints.

The second observation is that the cumulative reward
rates are very close to the upper bounds in all the simula-
tions. Again the ycurves come closest to the upper bounds
for very low and high values of U. As the processor utiliza-
tion increases (U — 1), 4 — oo, i.e., asymptotically the inter-
arrival time goes down to zero. When the interarrival time
is infinitesimally small, there are always enough class 1
tasks so that no class 2 tasks receive any service. A class 1
task receives only an infinitesimally small amount of serv-
ice before being preempted by the arrival of another class 1
task. Therefore yéb, y?‘\Z, 3 and ¥, all converge to &.

The third aspect of Fig. 4 is the behavior of the class-wise
reward rates, % and 7. The class-wise reward rate charac-
teristics change as p;/p, increases. In the first graph, where
the arrival rate of class 1 is lower than that of class 2, we
notice that, although % is initially lower than y,, it increases
rapidly with processor utilization and catches up with 7. In
the other two graphs, where /4, is the same and greater than
4y, respectively, we note that y is consistently higher than
% and is very close to % As p;/p, increases, i.e., the class 1
task load on the processor increases, } approaches y
whereas % approaches zero. The same trend is also ob-
served as &,/ 6, is increased (not shown here). In the last
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Fig. 4. Average reward attained.

two graphs, asymptotically ¥ equals y while % is-asymp-
totically zero. This asymptotic behavior is explained in the
previous paragraph.

is0

Fig. 5 illustrates 7 /y, and 75’ /y,, the ratios of the re-

ward rates when the task classes execute in isolation (ﬁ“
and 75°) to the reward rates when they execute in presence
of each other. The data plotted are for the same set of pa-
rameters values as Fig. 4. The graphs describe the effect of
an additional task class on the reward rate of a class under
our scheduling policy. These ratios are indicative of the
degree of fairness of the policy by depicting the effect of
preference of the policy for one class over another. When
A < 2y, both yi° /yl and y5’ /yz are almost the same and
equal to 1 for U < 045, i.e., the class-wise reward rates are
not affected by the presence of the other class. As the proc-
essor load increases, the effect of the presence of another
task class shows on both the classes with the ratios increas-
ing marginally above 1. As expected, the effect on class 2 is
slightly more marked than on class 1. When 4, 2 4,, the
presence of class 2 tasks has no effect on the reward rate of
class 1 tasks. However class 2 tasks pay a toll as the maxi-
mum value of 75’ /yz sharply increases to 3.7 and 12.5 in
the latter two graphs. This is a result of the top-level sched-
uling policy striving to maximize the cumulative reward
rate, at the cost of class 2 tasks. Since y, —» 0 as U — 1 for

the latter two parameter sets, the y5° /yz ratio asymptoti-
cally goes to infinity. A real-time system is often engineered
to operate at moderate loads. For such loads, the scheduling
policy is quite fair to both task classes and the reward rates
they achieve are almost the same as they would achieve
when executing in isolation.
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Fig. 5. Reward loss in presence of other task class.

The second metric used to evaluate the quality of our
scheduling policy is the average number of preemptions
seen by a task. Fig. 6 graphs I, I;, and I, which denote the
cumulative average, the class 1 average and the class 2 av-
erage of the number of preemptions respectively, when
EDF is used as the lower-level policy. As expected, I, is al-
ways higher than I;, and the cumulative average I lies in
between them. We note that I and I, are always less than 1,
and I, is less than 2 in all the graphs. Hence, in general, us-
ing EDF as the lower-level policy results in a low number of
preemptions. In all three graphs, the slope of I, is greater
than that of I; when processor utilizations are less than 0.8.
As the arrival rates increase, class 2 tasks are interrupted
more frequently by class 1 tasks and newly arrived class 2
tasks, whereas class 1 tasks are only interrupted by other
class 1 tasks. Hence the slope of I, is higher than I, in this
range. In contrast to this behavior, for U in the range [0.8, 1],
I, goes up while I, drops down sharply towards zero. This
apparent anomaly can again be explained by the prolifera-
tion of class 1 tasks resulting in class 2 tasks not being
scheduled at all. Thus, a high fraction of the preemptions
are caused by a newly arrived class 1 task preempting an-
other class 1 tasks. In this region, therefore, I equals I;.
Overall, when real-time systems operate in the low proces-
sor utilization region, the average number of preemptions
seen by tasks is likely to be quite low.

6 EXTENSIONS

In this section, we discuss two simple extensions. The first
is an extension of the scheduling algorithm for IRIS tasks
which have piecewise-linear reward functions. The second
is a modification of the top-level scheduling algorithm for
handling IRIS tasks that need to receive a certain minimum
execution time.
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Fig. 6. Expected number of preemptions per task.

6.1 Algorithm for Piecewise-Linear Reward
Functions

Piecewise-linear reward functions are useful in that arbi-
trary non-linear functions can be approximated by piece-
wise-linear functions. The piecewise linear function for task
k with n, segments is represented by two vectors: (g,(1),
&), ..., g.(m)), and (10, [,(1), ..., L(mp). g(i) is the slope of
segment 7, while [,(7) is the length of the projection of segment
i on the x-axis. A piecewise linear function with three seg-
ments is shown in Fig. 7. Thus function f,(x) is defined as:

J i
f(x) = ng(i)lk(i) +g(j+ 1)(" - lk(i)]’
P i1

where 3 () <x < 3160

S
(D 12)

13) X

Fig. 7. A typical piecewise linear reward function.

For any segment s, we also define the following: task(s) = k
if 5 is the ith segment defining f,, 1 < i < n, and len(s) =
Lusk (D). Thus task(s) represents the task whose reward func-
tion contains segment s, and len(s) represents the length of
the projection of the segment on the x-axis.

The algorithm is described in Fig. 8. When task m be-
comes schedulable in step m, its first segment is inserted
into a list £ using a binary search. After that, the segment
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with the largest derivative in £ is selected and allocated
service time from the interval. When the service allocation
to any segment s equals len(s), it is not pushed back into L.
Instead the next segment from task(s) is inserted into L. To
compute the complexity of this algorithm, we note that the
length of £ is at most M. Any segment of a reward function
for a task is inserted into the list £ at most once and then
accessed at most M times, once for every subinterval. Thus

the complexity of this algorithm is O(log MZkM:1 nk) when
there are M tasks and the reward function of task k consists
of n, pieces.

1. initialize
L = all the segments of all the tasks in decreasing
order of segment derivatives
x%=0vVk=1,2,..,. M
2. loop
for m = M downto 1 do
Using a binary search, insert the first segment
of task m into £
time_ allocation_left = ©,, ~ 7, _4
while (time_allocation_left > 0) do
/* Allocate time to the segment with */
/* the largest derivative */
Get next segment s € £
if (time_allocation_left 2 len(s))
/* Allocation for corresponding task */
/* can increase by len(s) */
time_allocation_left =
time_allocation_left — len(s)
Xigskis) = Xnaskeo) + len(s)
Using a binary search, insert the next
segment of task(s) into £
else
/* All of time_allocation_left */
/* is consumed */
len(s) = len(s) — time_allocation_left
Xinskts) = Xuaske) + time_allocation_left
time_allocation_left = 0
Push s to front of £

Fig. 8. Algorithm for piecewise-linear reward functions.

6.2 IRIS Tasks with Mandatory Portions

In the IRIS model there is no notion of a mandatory mini-
mum service time that a task must receive. However, the
top-level algorithms can easily handle, with a slight modifi-
cation, tasks having such constraints. Fig. 9 describes the
algorithm which transforms the static problem into one
where the deadlines of the tasks have been reduced to ac-
count for the mandatory portions. In the algorithm, m; de-
notes the length of the mandatory phase of task i. The rest
of the notation is defined in Section 3.1.1.

When mandatory subtasks are introduced, the IRIS no-
tion of tasks being able to receive any amount of service
before their deadlines does not hold. Hence there is an ad-

1. initialize
Ty = Thy — My
2. loop
fori=M -1 downto 1 do

* _ . * s
7, = min TM,TI} - m;
3. initialize
total_m = m,

4. loop
fori=2toMdo

7. =1. —total_m
total_m = total_m + m;

5. loop
fori=1toMdo

£ () = fi(x +m)

Fig. 9. Transforming tasks with mandatory phases into tasks without
them.

ditional performance metric, the probability of missing a
task’s deadline before it can receive its mandatory amount
of service. While scheduling tasks in the imprecise computa-
tion model [25], it is assumed that mandatory portions of
tasks can always be given service before their deadlines.
Further discussion of this is beyond the scope of this paper.

7 CONCLUSION

In this paper, we have presented the IRIS model, a new real-
time task model. These real-time tasks represent computa-
tions whose quality increases with execution time. To char-
acterize this computation, a reward function is associated
with every task indicating the reward generated by the task
as a function of execution time. We have developed a two-
level scheduling policy for IRIS tasks executing on a uniproc-
essor system. We have presented an algorithm for the static
version of the problem which schedules tasks to maximize
the total reward attained by the task set and used the algo-
rithm as a top-level heuristic in our two-level policy. We have
also described a greedy policy and compared its performance
to the two-level policy. We have computed theoretical upper
bounds on the performance on any policy scheduling IRIS
tasks. We have found that with an appropriate choice of a
lower-level policy, the performance of our two-level policy is
extremely close to the upper bounds. The average number of
preemptions of a task under this policy is also very small
(less than 2) when EDF is used as the lower-level policy.
Future work on this problem will include extending our
approach to scheduling IRIS tasks to a multiprocessor setting,
as well as studying the advantages that might accrue by intro-
ducing a coprocessor to execute the scheduling algorithms.

APPENDIX
In this section, we present the proofs of Lemmas 1 and 2.
LEMMA 1 PROOF.

1) This property is obtained by applying (1) to tasks i
and j in interval k.
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2) This property is obtained by using (2) with task j in
interval k, and using (1) with task 7 in interval k.

3) Since x: >0, 3 some interval k < i, s.t. x:k >0.
Since i < j, k < j. Thus the proof follows from prop-
erty 2 of this lemma.

4) This property is obtained by using (1) for intervals
i and j with task k. O

LEMMA 2 PROOE.

1) Assume the lemma is not true, ie., 1 < W, for
some i. From Lemma 1.4, we know that there does
not exist any task which is scheduled in both inter-
vals i and (i + 1). Therefore there must be some
task, m, in the optimal solution which is scheduled
in interval (i + 1) but not in interval i. Then from (2)
and (1), we get

gm(x:n) S His and gm(xjn) = Hiqg-

This implies Hivy <y wh1ch is a contradiction.

2) We construct x from x by an iterative procedure
which operates on every pair of tasks which have
received nonzero service in x .

Take two tasks i and j, 1 < j, that have received
nonzero service in x . Let m = maxik | x; x> 0}, and
n = maxik | x; x> 0}. The construction is divided
into three cases.

Case 1. M = n. Then from Lemma 1.1, we know that
g,(x)) = g](x ). Construct x/ k =x;; and x k = x]k,Vl
<ks<M.

Case 2. M < n. Then we get g;(x)) 2 gj(x]*-) by using (1) and

Case 3. M > n. Since 7 > 7], we can construct x’

Lemma 2.1. Again construct x;” and x’-* as in Case 1.

* that differ
from x only in assignments to tasks i and j in the mth
and nth intervals as follows:

X =xy,, k=i, V=1, ..,M,

¥

. .
Xy = Xy — mm( lm,xj/n),

2H

im = x +mm( lm,x]n)

X

2%

X=X, + mm(xl e Xj, n)

,* L *
Xy = Xiy — min xl m, m).
Now, if

. ‘
x,, >0, max{k| x/3 > 0} = max{

.
X >0l =m,

and case 1 can now be applied. If
xl’“m =0, max{k' xz.’/*k >0} < max{k’ x]’*k >0l =m,
and case 2 can now be applied.

By repeatedly applying this construction procedure to
all pairs of tasks that received nonzero service in x,
we obtain x”*, in which case 1 or case 2 apply to all
pairs.
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