
 

Homework 2 (due September 17, 2019) 

Question 1: Assume that the cycle time in the pipelined architecture does not allow the 
writing and reading of the register file in the same cycle. Hence, if at a given cycle, the 
ID stage wants to read from the register file and the WB stage wants to write to the 
register file, then one of the two stages has to stall and use the register file in a later 
cycle. In this question, assume that when the ID and WB stages compete for the 
register file in a given cycle, the WB stage gets to use the register file.  

a. Using a table similar to the one shown below, trace the execution of the first 7 
instructions of the following code segment (ignore instructions I8 and I9 for now) 
on a 5-stage pipeline architecture that has hardware support for forwarding and 
stalling: 

 I1: lw         $2, 100($1) 
 I2: addi       $1, $1, -4 
 I3: sw $2, 100($1) 
 I4: add       $2, $2, $5 
 I5: sw       $2, 100($3) 
 I6: addi $3, $3, -4 
 I7: bneq      $1, $6, I1 

 I8: sub $1, $1, $7 
 I9 sub $3, $3, $7 
 

 IF ID EXE MEM WB 
Cycle 1  lw  $2, 100($1)     

Cycle 2 addi $1,$1, -4 

 

 

lw  $2, 100($1)    

Cycle 3 sw  $2, 100($1) addi $1,$1, -4 

 

 

lw  $2, 100($1)   

Cycle 4  

 

 

    

…       

…  

 

 

    

b. In your answer to part a, only stalling due to structural hazards is considered 
(there is no data or control hazards). In this part, you will assume that the branch 
condition is resolved in the ID stage, and hence, if the branch condition is true, 
then the instruction that entered the pipeline after the branch will have to be 
flushed to deal with control hazards. To demonstrate this effect, augment the 
table in your answer to part (a) by tracing the pipeline configuration for a few 
additional cycles after the bneq instruction reaches the WB stage assuming that 
the branch condition evaluates to “true”.  

c. Assuming that the loop (I1-I7) will execute 10000 iterations (in each iteration, 
except the last time, the branch condition will be true), compute the CPI during 
the execution of the loop (ignore the time to fill up the pipeline). 

Question 2: In this question, we will assume that the following code is executed on a 5-
stage pipeline architecture that does not implement forwarding or stalling in hardware. 



 

       (1)   add $4, $1, $1 
  (2) lw $2, 40($4) 
       (3)   sub $2, $2, $5 
       (4)   sw $2, 80($4) 
        (5) lw $3, 10($4) 
  (6) sub $3, $3, $5 
  (7) sw $3, 90($4) 
        (8) beq $3, $6, L 
  ….. 
          L:   …… 
 
 

a. Identify the data dependences that cause hazards (use sentences such as 
“dependence of instruction (y) on instruction (z) caused by register $x).  

b. If the hazards identified in (a) are to be prevented by the compiler through no-op 
insertions but without reordering the instructions, indicate where would the 
compiler add no-ops (use sentences such as “insert x no-ops between 
instructions (y) and (z)).  

c. Now assume a more intelligent compilers that can move instructions in the code. 
Can such a compiler reduce the number of added no-ops? If so, show the new 
code and indicate the added no ops.    

 
Question 3: In this question, you will consider the instruction “R-type-rm $r1, $r2, $r3” 

that is described in Question 3 of Homework 1. This figure shows the modifications to 

the 5-stage pipelined architecture to accommodate the R-type-rm instruction. 

Specifically, a second ALU stage, EX2, is added to perform the arithmetic/logic 

operation for R-type-rm instructions after the second operand is read from memory, thus 

resulting in a 6-stage pipeline. 

(a) Specify the values of the control signals (ALUsrc1, ALUsrc2, MemtoReg, 

MemWrite and MemRead) to implement the correct data paths for the R-type and 

the R-type-rm instructions. Also, specify what operation should the ALU in the 

first ALU stage (ALU1) perform when an R-type-rm instruction is in the ALU1 

stage. 

(b) In the 5-stage pipeline architecture, we added two forwarding paths from the 

EX/MEM and the MEM/WB buffers to the ID/EX buffer to avoid data hazards. 

These paths can be denoted EX/MEM  ID/EX and MEM/WB  ID/EX, 

respectively. We can demonstrate the use of the MEM/WB  ID/EX path in 

avoiding hazards using this short code segment: 

add $1, $2, $3 

sw   $4, 100($5) 

sub  $6, $7, $1 

 

http://people.cs.pitt.edu/~melhem/courses/1541p/h2_data_path.pptx


 

Using a similar notation, identify the forwarding paths that should be added to the 

6-stage pipeline to avoid data hazards and for each forwarding path, give a short 

example of a code segment that uses this path to avoid hazard.  

(c) Even with the forwarding paths, the 5-stage pipeline had to stall for one cycle 

during the execution of the following code segment  

lw    $4, 100($5) 

sub  $6, $7, $4 

to avoid data hazards. In other words, a one-cycle stall is needed when a “lw” 

instruction writes to a register and is immediately followed by an instruction that 

reads from this register. Use short code segments to describe the cases that will 

necessitate the stalling of the 6-stage pipeline. Note that there are more than one 

case and in some cases, the pipeline may have to stall for more than one cycle. 

Question 4: 
Consider two designs for the 5-stage pipelined architecture. In the first design, the 

branch address and target are resolved in the MEM stage, while in the second design, 

the branch target and address are resolved in the ID stage but the clock cycle time is 

10% larger than in the first design. Assuming that 

- the instruction mix executing on the pipeline contains 25% branch instructions, 

70% of which are taken  

- the CPI of both designs is 1.5 if we do not account for stalling due to control 

hazards  

 

a. Compute the CPI for each of the two designs when the effect of control hazards 

is accounted for 

b. Specify which of the two designs would be more efficient. 

 

 


