Which one of these sentences is true and which is false?

¢ All the threads of a thread block execute in lock-step

¢ _syncthreads() is a barrier for all the threads in a thread block

* Variable declared as _global_in a CUDA kernel are allocated in the shared memory

* Shared memory in CUDA is shared by all the threads in a kernel

* Global memory in CUDA is shared by all the threads

¢ cudaMemcpy() can be called from a Kernel to copy data between host and global memory

¢ cudaMemcpy() is used to copy data between host and global memory

False

True

False

False

True

False

True

Assuming that you wrote a cuda kernel that declares a shared memory array consisting of
4K bytes and that the compiler determined that each thread in that kernel needs 16 integer
registers. Assume also that your GPU has 4 SMs, each with a register file of 2048 integer
registers and a shared memory of 16K bytes. If your application will execute kernel
<<<nblocks, blksize>>>, answer the following questions:

* What is the maximum number of threads that can execute simultaneously on the GPU?
Each SM has 2048 registers and each thread needs 16 registers
- each SM can support 128 threads = 4 SMs can support 512 threads

* What is the max number of thread blocks that can execute simultaneously on an SM??
Each SM has 16K bytes of shared memory and each thread block needs 4K bytes
- each SM can support at most 4 thread blocks simultaneously.
Note that the limit of 128 treads/Sm (4 warps/SM) places an additional limit on the
max number of blocks that can execute simultaneously.

* To execute the maximum number of threads simultaneously what is the value of nblocks

and blksize that you would use when launching the kernel

Kernel<<<16,32>> or <<<8, 64>>> or <<4, 128>>

{55

12/3/2019

I)

Show the output of the content of array A after the execution of the following program:
global F(int *A)

{
int idx = blockldx.x * blockDim.x + threadldx.x ;
Alidx] = idx ;
A[blockldx.x] = blockldx.x ;

}

void main()

{ Allocate a 16 element int array A in the GPU global memory and initialize its elements to O ;

F<<<2,4>>>(A);

}
A[0] | A[1] | A[2] | A[3] | Al4] | A[5] | Al6] | Al7] | A[8] | AI9] | Al10] | A[11] | A[12] | A[13] | A[14] | A[15]
0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0
Show the output of the content of array A after the
execution of the following program: Al0,0] | A[0,1] | A[O,2] | A[0,3] | A[OA4] | A[O,5]
_global_F(int *A) A[?O] A[il] A[le A[:I].-3] A[f4] A[fs]
{ introw = blockldx.y * blockDim.y + threadldx.y ; - - - - - -
int col =blockldx.x * blockDim.x + threadldx.x ; 0 ! 2 ! 2 3
Alrow][col] = blockldx.x + blockldx.y + threadldx.x ; A0 | AT | AL22] | AZ3] | AL24) | ALZ3]
}; 0 1 2 1 2 3
' AI3,01 | A3,11 | AI3.2] | A331 | AIBAL | A3S]
void main() 1 2 3 2 3 4
{ Allocate an 6x6 array A in the GPU global memory ; AL4,01 | Al4,1] | Al4,2] | AL4,3] | Al44] | AL4S)
initialize A’s elementsto 0 ; 1 2 3 2 3 4
dim3 grid(2,2); //a 2x2 array of blocks Al5,01 | Al51] | AL5,2] | AL5,3] | AL5,4] | Al55]
dim3 blocks(3,3); // each block is a 3x3 array of threads 1 2 3 2 3] 4
F<<<grid,blocks>>>(A) ; vy
}

12/3/2019

Show the output of the content of array A after the
execution of the following program:

global F(int *A)

{ introw = blockldx.y * blockDim.y + threadldx.y ;
int col =blockldx.x * blockDim.x + threadldx.x ;
Althreadldx.y][threadldx.x] = blockldx.x ;

b

void main()

{ Allocate an 6x6 array A in the GPU global memory ;
initialize A’s elements to 0 ;
dim3 grid(2,2); //a 2x2 array of blocks

dim3 blocks(3,3); // each block is a 3x3 array of threads

F<<<grid,blocks>>>(A) ;
}

A[0,0]

A[0,1]

Al0,2]

A[0,3]

A[0,4]

A[0,5]

Oorl

Oorl

Oorl

A[1,0]

Al1,1]

Al1,2]

A[1,3]

Al1,4]

A[1,5]

Oorl

Oorl

Oorl

A[2,0]

Al2,1]

Al2,2]

A[2,3]

Al2,4]

A[2,5]

Oor1l

Oorl

Oorl

A[3,0]

A[3,1]

A[3,2]

A[3,3]

A[3,4]

A[3,5]

Al4,0]

Al4,1]

Al4,2]

Al4,3]

Al4,4]

Al4,5]

A[5,0]

A[5,1]

A[5,2]

A[5,3]

Al5,4]

A[5,5]

Rewrite the following cuda kernel without using shared memory. The kernel adds n _{é}

integers stored in the global array “input[]” into a global variable, “total”, and is called as

reduce<<<nb, n/nb>>(input, n, total)
Where n is multiple of nb.

_global_void reduce(int *input, int *n, int *total_sum)
{
int tid = threadldx.x;
int idx = blockldx.x*blockDim.x + threadldx.x;
shared int x[blocksize];
x[tid] = input[idx] ;
_syncthreads();

for(int half=blockDim.x/2; half>0; half=half/2)
{
if(tid < half) x[tid] += x[tid + half];
_syncthreads();
}
If (tid == 0) atomicAdd(total_sum, x[tid]);
}

_global_void reduce(int *input, int n, int *total_sum)

{

int tid = threadldx.x;
int idx = blockldx.x*blockDim.x + threadldx.x;

for(int half=blockDim.x/2; half>0; half=half/2)

{

if(tid < half) input[idx] += input[idx + half];
_syncthreads();

}

If (tid == 0) atomicAdd(total_sum, input[idx]);

12/3/2019

12/3/2019

What is wrong with the following code?

global F(int *A)

{
int idx = blockldx.x * blockDim.x + threadldx.x ;
Alidx] = idx ;
if (idx < blockDim * gridDim /2) _syncthreads() ;
Alblockldx.x] = blockldx.x ;
}

_syncthreads() is allowed in conditional code only if the conditional is uniform across the
entire thread block.

