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Abstract—With concerted efforts from researchers in hard-
ware, software, algorithm, and resource management, HPC is
moving towards extreme-scale, featuring a computing capabil-
ity of exaFLOPS. As we approach the new era of computing,
however, several daunting scalability challenges remain to be
conquered. Delivering extreme-scale performance will require
a computing platform that supports billion-way parallelism,
necessitating a dramatic increase in the number of computing,
storage, and networking components. At such a large scale,
failure would become a norm rather than an exception, driving
the system to significantly lower efficiency with unprecedented
amount of power consumption.

To tackle these challenges, we propose an adaptive and
power-aware algorithm, referred to as Lazy Shadowing, as
an efficient and scalable approach to achieve high-levels of
resilience, through forward progress, in extreme-scale, failure-
prone computing environments. Lazy Shadowing associates
with each process a “shadow” (process) that executes at a
reduced rate, and opportunistically rolls forward each shadow
to catch up with its leading process during failure recovery.
Compared to existing fault tolerance methods, our approach
can achieve 20% energy saving with potential reduction in
solution time at scale.

Keywords-Lazy Shadowing; extreme-scale computing; for-
ward progress; reliability;

I. INTRODUCTION

The system scale needed to address our future computing
needs will come at the cost of increasing complexity. As
a result, the behavior of future computing and information
systems will be increasingly difficult to specify, predict
and manage. This upward trend, in terms of scale and
complexity, has a direct negative effect on the overall system
reliability. Even with the expected improvement in the
reliability of future computing technology, the rate of system
level failures will dramatically increase with the number of
components, possibly by several orders of magnitude [1].

Another direct consequence of the increase in system
scale is the dramatic increase in power consumption. Recent
studies show a steady rise in system power consumption to
1-3MW in 2008, followed by a sharp increase to 10-20MW,
with the expectation of surpassing 50MW soon [2]. The US
Department of Energy has recognized this trend and set a
power limit of 20MW, challenging the research community
to provide a 1000x improvement in performance with only
a 10x increase in power [2]. This huge imbalance makes

system power a leading design constraint in future extreme-
scale computing infrastructure [3].

In today’s HPC systems the response to faults mainly
consists of rolling back the execution. For long-running jobs,
such as scientific applications, checkpoint of the execution
is periodically saved to stable storage to avoid complete
rollback. Upon the occurrence of a hardware or software
failure, recovery is then achieved by restarting from a saved
checkpoint. Given the anticipated increase in system-level
failure rates and the time to checkpoint large-scale compute-
intensive and data-intensive applications, it is predicted that
the time required to periodically checkpoint an application
and restart its execution will approach the system’s Mean
Time Between Failures (MTBF). Consequently, applications
will make little forward progress, thereby reducing consid-
erably the overall system efficiency [1].

More recently, process replication, either fully or partially,
has been proposed to scale to the resilience requirements of
future extreme-scale systems. Based on this technique, each
process is replicated across independent computing nodes.
When the original process fails, one of the replicas takes
over the computation task. Replication requires a tremendous
increase in the number of computing resources, thereby
constantly wasting a significant portion of system capacity.

There is a delicate interplay between fault tolerance and
energy consumption. Checkpointing and replication require
additional energy to achieve fault tolerance. Conversely, it
has been shown that lowering supply voltages, a commonly
used technique to conserve energy, increases the proba-
bility of transient faults [4]. The trade-off between fault
free operation and optimal energy consumption has been
explored in the literature. Limited insights have emerged,
however, with respect to how adherence to application’s
desired QoS requirements affects and is affected by the fault
tolerance and energy consumption dichotomy. In addition,
abrupt and unpredictable changes in system behavior may
lead to unexpected fluctuations in performance, which can be
detrimental to applications’ QoS requirements. The inherent
instability of extreme-scale computing systems, in terms of
the envisioned high-rate and diversity of their faults, together
with the demanding power constraints under which these
systems will be designed to operate, calls for a reconsider-
ation of the fault tolerance problem.



To this end, we propose an adaptive and power-aware
algorithm, referred to as Lazy Shadowing, as an efficient
and scalable alternative to achieve high-levels of resilience,
through forward progress, in extreme-scale, failure-prone
computing environments. Lazy Shadowing extends the idea
of shadowing from [5], [6], [7] with novel concepts of
shadow collocation and shadow leaping. In the basic idea of
shadowing, each process (referred to as a main) is associated
with a replica (referred to as a shadow) to improve resilience.
The shadows initially execute at a reduced rate. Upon
failure of a main, its associated shadow increases its rate
to complete the task, thereby reducing the impact of such
a failure on the progress of other tasks. Instead of using
Dynamic Voltage and Frequency Scaling (DVFS) for execu-
tion rate control as in [5], [6], [7], in this paper we explore
the applicability of collocating shadows to simultaneously
save power/energy and computing resources. Furthermore,
we identify a unique opportunity that allows the lagging
shadows to benefit from the faster execution of the mains,
without incurring extra overhead. Specifically, when a failure
occurs, Lazy Shadowing takes advantage of the recovery
time and leaps forward the shadows by copying states from
the mains. Consequently, the high probability that shadows
never have to complete the full task, coupled with the
fact that they initially only consume a minimal amount of
energy, dramatically increases a power-constrained system’s
tolerance to failure.

Lazy Shadowing is adaptive in that it enables a con-
figurable trade-off between rollback (time redundancy) and
replication (hardware redundancy) by dynamically adjusting
the main and shadow processes’ execution rates. Optimal
execution rates can be derived either analytically or em-
pirically, in order to achieve the desired balance between
two important objectives, namely, the expected completion
time of the supported application, and the power constraints
imposed by the underlying computing infrastructure.

The main contributions of this paper are as follows:

• An efficient and scalable algorithm for fault tolerance
in future extreme-scale computing systems.

• A performance modeling framework to quantify the
expected completion time and energy consumption.

• A discussion on implementation details and potential
runtime overhead.

• A thorough comparative study that explores the perfor-
mance of Lazy Shadowing with different application
requirements and system characteristics.

The rest of the paper is organized as follows. We begin
with a survey on related work in Section II. Section III
introduces Lazy Shadowing algorithm and Section IV dis-
cusses how it can be applied to extreme-scale systems. We
then present a performance modeling framework in Section
V, followed by experiments and evaluation in section VI.
Section VII concludes this work.

II. RELATED WORK

Rollback recovery is the dominant mechanism to achieve
fault tolerance in current HPC environments [8]. In the most
general form, rollback recovery involves the periodic saving
of the execution state (checkpoint), with the anticipation that
in the case of a failure, computation can be restarted from a
previously saved checkpoint. Coordinated checkpointing is
a popular approach for its ease of implementation. Its major
drawback, however, is the lack of scalability, as it requires
global coordination [9].

In uncoordinated checkpointing, processes checkpoint
their states independently and postpone creating a globally
consistent view until the recovery phase. The major advan-
tage is the reduced overhead during fault free operation.
However, the scheme requires that each process maintains
multiple checkpoints and can also suffer the well-known
domino effect [10], [11], [12]. Although well-explored,
uncoordinated checkpointing has not been widely adopted
in HPC environments for its complexities.

One of the largest overheads in any checkpointing process
is the time necessary to write the checkpointing to stable
storage. Incremental checkpointing attempts to address this
by only writing the changes since previous checkpoint [13].
Another proposed scheme, known as in-memory check-
pointing, minimizes the overhead of disk access [14], [15].
The main concern of these techniques is the increase in
memory requirement. It has been suggested that nodes in
extreme-scale systems should be configured with fast local
storage [2]. Multi-level checkpointing can benefit from such
a strategy [16]. This, however, may lead to increased failure
rates of individual nodes and complicate the checkpoint
writing process.

Process replication, or state machine replication, has long
been used for reliability and availability in distributed and
mission critical systems [17]. Although it is initially re-
jected in HPC communities, replication has recently been
proposed to address the deficiencies of checkpointing for
upcoming extreme-scale systems [18], [19]. Full and partial
process replication have also been studied to augment ex-
isting checkpointing techniques, and to detect and correct
silent data corruption [20], [21], [1], [22]. Our approach is
largely different from classical process replication in that
we dynamically configure the execution rates of main and
shadow processes, so that less resource/energy is required
while reliability is still assured.

Replication with dynamic execution rate is also explored
in Simultaneous and Redundantly Threaded (SRT) processor
whereby one leading thread is running ahead of trailing
threads [23]. However, the focus of [23] is on transient
faults within CPU while we aim at tolerating both permanent
and transient faults across all system components. Also, this
work differs from [5], [6], [7], where shadowing with DVFS
is studied for single or loosely-coupled tasks.



III. LAZY SHADOWING

By carefully analyzing the characteristics of HPC appli-
cations, we devise novel ideas of shadow collocation and
shadow leaping, and integrate them with the basic concept
of shadowing, which jointly form a complete algorithm that
we call Lazy Shadowing. To make it easy to follow, we first
re-emphasize important details of shadowing. Assuming the
fail-stop failure model [24], [25], the concept of Shadowing
can be described as follows:
• A main process, Pm(σm, w, tm), that executes at the rate

of σm to complete a task of size w at time tm.
• A shadow process, Ps(< σb

s , σa
s >, w, ts), that initially

executes at σb
s , and increases to σa

s if its main process
fails, to complete a task of size w at time ts.

Under fail-stop model, Lazy Shadowing is able to tolerate
failures in hardware, such as power supply, CPU, attached
accelerators (e.g., GPU), memory bit flips that exceed ECC’s
capacity, as well as software, such as OS and runtime.

Initially, the main executes at rate σm, while the shadow
executes at σb

s ≤ σm. In the absence of failure, the main
completes at time tm = w/σm, which immediately triggers
the termination of the shadow. However, if at time t f < tm
the main fails, the shadow, which has completed an amount
of work wb = σb

s ∗ t f , increases its execution rate to σa
s to

complete the task by ts.
In HPC, throughput consideration requires that the rate

of the main, σm, and the rate of the shadow after failure,
σa

s , be set to the maximum. The initial execution rate of
the shadow, σb

s , however, can be derived by balancing the
trade-offs between delay and energy. For a delay-tolerant,
energy-stringent application, σb

s is set to 0, and the shadow
starts executing only upon failure of the main process. For
a delay-stringent, energy-tolerant application, the shadow
starts executing at σb

s = σm to guarantee the completion
of the task at the specified time tm, regardless of when
the failure occurs. In addition, a broad spectrum of delay
and energy trade-offs in between can be explored either
empirically or by using optimization frameworks for delay
and energy tolerant applications.

IV. EXTREME-SCALE FAULT TOLERANCE

Enabling Lazy Shadowing for resiliency in extreme-scale
computing brings about a number of challenges and design
decisions that need to be addressed, including the applica-
bility of this concept to a large number of tasks executing
in parallel, the effective way to control shadows’ execution
rates, and the runtime mechanisms and communications
support to ensure efficient coordination between a main and
its shadow. Taking into consideration the main characteris-
tics of compute-intensive and highly-scalable applications,
we design two novel techniques, referred to as shadow
collocation and shadow leaping, in order to achieve high-
tolerance to failure while minimizing delay and energy
consumption.

A. Application model

We consider the class of compute-intensive and strongly-
scaled applications, executing on a large-scale multi-core
computing infrastructure [2]. We use W to denote the size
of an application workload, and assume that the workload
is split into a set of tasks, T , which execute in parallel.
Assuming the maximum execution rate is σmax = 1, the
failure-free completion time of the application is W/|T |.
Given the prominence of MPI in HPC environments, we
assume message passing as the communication mechanism
between tasks. The execution is composed of a set of
iterations separated by synchronization barriers.

B. Shadow collocation

We use the term core to represent the resource allocation
unit (e.g., a CPU core, a multi-core CPU, or a cluster node),
so that our algorithm is agnostic to the granularity of the
hardware platform [26]. Each main process executes on one
core exclusively to achieve maximum throughput. On the
other hand, we collocate multiple shadows on a single core
and use time sharing to achieve the desired execution rates.
To execute an application of M tasks, N = M+S cores are
required, where M is a multiple of S. Each main is allocated
one core (referred to as main core), while α=M/S (referred
to as collocation ratio) shadows are collocated on a core
(shadow core). The N cores are grouped into S sets, each of
which we call a shadowed set. Each shadowed set contains α

main cores and 1 shadow core. This is illustrated in Figure 1.
Collocation has an important ramification with respect to

the resilience of the system. Specifically, one failure can be
tolerated in each shadowed set. If a shadow core fails, all the
shadows in the shadowed set will be lost without interrupting
the execution of the mains. On the other hand, if a main core
fails, the associated shadow will be promoted to a new main,
and all the other collocated shadows will be terminated to
speed up the new main. Consequently, a failure, either in
main or shadow core, will result in losing all the shadows in
the shadowed set, thereby losing the tolerance to any other
failures. Quantitative study of this effect using probability
theory is presented in Section V-A.
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Figure 1: An example of collocation. N = 12, M = 9, S = 3.



C. Shadow leaping

As the shadows execute at a lower rate, failures will
incur delay for recovery. This problem deteriorates as depen-
dencies incurred by messages and synchronization barriers
would propagate the delay of one task to others. Fortunately,
slowing down the shadows provides an opportunity for the
shadows to benefit from the faster execution of their mains.
By copying the state of each main to its shadow, which is
similar to the process of storing a checkpoint in a buddy
in [14], forward progress is achieved for the shadows with
minimized time and energy. This technique, referred to as
shadow leaping, effectively limits the distance between main
and shadow in progress. As a result, the recovery time after
a failure, which depends on the distance between the failing
main and its shadow, is also reduced. More importantly,
we opportunistically overlap shadow leaping with failure
recovery to avoid extra overhead.

Assuming a failure occurrence at time t f , Figure 2 shows
the concept of shadow leaping. Upon failure of a main
process, its associated shadow speeds up to minimize the
impact of failure recovery on the other tasks’ progress, as
illustrated in Figure 2(a). At the same time, as shown in
Figure 2(b), the remaining main processes continue execu-
tion until the barrier at Wsyn, and then become idle until
tr. Shadow leaping opportunistically takes advantage of this
idle time to leap forward the shadows, so that all processes,
including shadows, can resume execution from a consistent
point afterwards. Shadow leaping increases the shadow’s
rate of progress, at a minimal energy cost. Consequently,
it reduces significantly the likelihood of a shadow falling
excessively behind, thereby ensuring fast recovery while
minimizing energy consumption.

We summarize the integration of shadow collocation and
shadow leaping with basic shadowing in Algorithm 1. User
needs to specify M for the number of parallel tasks, and S for
the number of shadow cores. These two parameters jointly
determine the collocation ratio α = M/S. The execution
starts by simultaneously launching 2M processes, of which
one main is associated with one shadow for each task (line
1). All processes are then grouped into S shadowed sets.
Accordingly, the processes are mapped to cores so that
each shadowed set has α cores for α mains and 1 core for
all the associated shadows (line 2). During the execution,
the system runs a failure monitor (e.g., by using heartbeat
protocol [27]) that triggers corresponding actions when a
failure is detected (line 4 to 15). A failure occurring in a
vulnerable shadowed set results in an application fatal failure
and forces a rollback (line 6 and 7). On the other hand,
failure in a non-vulnerable shadowed set can be tolerated
while making the target shadowed set vulnerable (line 9).
In this case, failure of a main need to be treated differently
from failure of a shadow. While a failure of shadow does
not impact the normal execution and thus can be ignored,

Wsyn

(a) Faulty task behavior.

Wsyn

(b) Non-faulty task behavior.

Figure 2: The illustration of shadow leaping.

input : M,S
output: Application execution status

1 start M pairs of main and shadow;
2 map processes to cores;
3 while execution not done do
4 if failure detected in shadowed set SSi then
5 if SSi is vulnerable then
6 notify “Application fatal failure”;
7 restart execution;
8 else
9 mark SSi as vulnerable;

10 if failure happened to a main then
11 promote its shadow to new main;
12 trigger shadow leaping;
13 end
14 end
15 end
16 end
17 output “Application completes”;

Algorithm 1: Lazy Shadowing

failure of a main triggers promotion of its shadow to a
new main, which increases its rate to recover the failure
and complete the task (line 11). Simultaneously, a shadow
leaping is undertaken by all other shadows to align their
states with those of their associated mains (line 12). This
process continues until all tasks of the application are
successfully completed.



D. Implementation issues

We are implementing a MPI based library for Lazy
Shadowing, referred to as lsMPI. Inserted as a layer between
application and MPI, lsMPI uses the MPI profiling hooks to
intercept every MPI call. Currently, lsMPI delegates failure
detection to ULFM [28], [29]. lsMPI should be portable
across all MPI implementations once extensions by ULFM
are added to MPI standard.

State consistency is required both during normal execution
and following a failure. We design a consistency protocol to
assure that the shadows see the same message order and
MPI results as mains. For each message, the main sender
sends a copy of the message to each of the main and shadow
receivers. After getting the message, the main receiver sends
an ACK to the shadow sender, so that the shadow sender can
safely suppress sending the message and proceed. If a main
fails, its associated shadow will become a new main and
start sending out messages.

We assume that only MPI operations can introduce non-
determinism. MPI ANY SOURCE receives may result in
different message orders between the main and shadow. To
deal with this, we always let the main receive a message
ahead of the shadow and then forward the message source
to its shadow. The shadow then issues a receive with the
specific source. Other operations, such as MPI Wtime() and
MPI Probe(), can be dealt with by always forwarding the
result from the main to the shadow.

V. ANALYTICAL MODELS

In the following we develop analytical models to quantify
the expected performance of Lazy Shadowing, as well as
prove the bound on performance loss due to failures. All
the analysis below is under the assumption that there are a
total of N cores, and W is the application workload. M of
the N cores are allocated for main processes, each having
a workload of w = W

M , and the rest S cores are for the
collocated shadow processes. Note that process replication
is a special case of Lazy Shadowing where α = 1, so
M = S = N

2 and w = 2W
N .

A. Application fatal failure probability

An application has to roll back when all replicas of a
task have been lost. We call this an application fatal failure,
which is inevitable even when every process is replicated.
In order to take into account the overhead of rollback in
the calculation of completion time and energy consumption,
we first study the probability of application fatal failure. In
this work we assume that once an application fatal failure
occurs, execution always rolls back to the very beginning.

The impact of process replication on application fatal
failure has been studied in [26] and results are presented in
terms of Mean Number of Failures To Interrupt (MNFTI).
Applying the same methodology, we derive the new MNFTI
under Lazy Shadowing, as shown in Table I. As Lazy

Shadowing can tolerate one failure in each shadowed set,
the results are for different numbers of shadowed sets (S).
Note that when processes are not shadowed, every failure
would interrupt the application, i.e., MNFTI=1.

To further quantify the probability of application fatal
failure, we use f (t) to denote the failure probability density
function of each core, and then F(t) =

∫ t
0 f (τ)dτ is the

probability that a core fails in the next t time. Since each
shadowed set can tolerate one failure, then the probability
that a shadowed set with α main cores and 1 shadow core
does not fail by time t is the probability of no failure plus
the probability of one failure, i.e.,

Pg =
(

1−F(t)
)α+1

+

(
α+1

1

)
F(t)×

(
1−F(t)

)α

(1)

and the probability that an fatal failure occurs to an appli-
cation using N cores within t time is the complement of the
probability that none of the shadowed sets fails, i.e.,

Pa = 1− (Pg)
S (2)

where S = N
α+1 is the number of shadowed sets. The applica-

tion fatal failure probability can then be calculated by using
t equal to the expected completion time of the application,
which will be modeled in the next subsection.

B. Expected completion time

There are two types of delay due to failures. If a failure
does not lead to an application fatal failure, the delay corre-
sponds to the catching up of the shadow of the failing main
(see Figure 2(a)). Otherwise, a possible larger (rollback)
delay will be introduced by an application fatal failure. In
the following we consider both delays step by step. First
we discuss the case of k failures without application fatal
failure. Should a failure occur during the recovery of a
previous failure, its recovery would overlap with the ongoing
recovery. To study the worst case behavior, we assume
failures do not overlap, so that the execution is split into
k+1 intervals, as illustrated in Figure 3. ∆i (1≤ i≤ k+1)
represents the ith execution interval, and τi (1≤ i≤ k) is the
recovery time after ∆i.

The following theorem expresses the completion time, T k
c ,

as a function of k.
Theorem 1: Assuming that failures do not overlap and no

application fatal failure occurs, then using Lazy Shadowing,

T k
c = w+(1−σ

b
s )

k

∑
i=1

∆i

Table I: Application’s MNFTI when Lazy Shadowing is used.
Results are independent of α = M

S .

S 22 24 26 28 210

MNFTI 4.7 8.1 15.2 29.4 57.7
S 212 214 216 218 220

MNFTI 114.4 227.9 454.7 908.5 1816.0



Figure 3: Application’s progress with shadow catching up delays.

Proof: Lazy Shadowing guarantees that all the shadows
reach the same execution point as the mains (See Figure 2)
after a previous recovery, so every recovery time is propor-
tional to its previous execution interval. That is, τi = ∆i×
(1−σb

s ). According to Figure 3, the completion time with k
failures is T k

c = ∑
k+1
i=1 ∆i +∑

k
i=1 τi = w+(1−σb

s )∑
k
i=1 ∆i

Although it may seem that the delay would keep growing
with the number of failures, it turns out to be well bounded,
as a benefit of shadow leaping:

Corollary 1.1: The delay induced by failures is bounded
by (1−σb

s )w.
Proof: From above theorem we can see the delay

from k failures is (1−σb
s )∑

k
i=1 ∆i. It is straightforward that,

for any non-negative integer of k, we have the equation
∑

k+1
i=1 ∆i =w. As a result, ∑

k
i=1 ∆i =w−∆k+1 ≤w. Therefore,

(1−σb
s )∑

k
i=1 ∆i ≤ (1−σb

s )w.
Typically, the number of failures to be encountered is

stochastic. Given a failure distribution, however, we can
calculate the probability for a specific value of k. We assume
that failures do not occur during recovery, so the failure
probability of a core during the execution can be calculated
as Pc = F(w). Then the probability that there are k failures
among the N cores is

Pk
s =

(
N
k

)
Pc

k(1−Pc)
N−k (3)

The following theorem expresses the expected completion
time, Ttotal , considering all possible number of failures.

Theorem 2: Assuming that failures do not overlap, then
using Lazy Shadowing, Ttotal = Tc/(1− Pa), where Tc =

∑i T i
c ·Pi

s.
Proof: Without application fatal failure, the completion

time considering all possible values of k can be averaged as
Tc =∑i T i

c ·Pi
s. If an application fatal failure occurs, however,

the application needs to roll back to the beginning. With the
probability of rollback calculated as Pa in Section V-A, the
total expected completion time is Ttotal = Tc/(1−Pa).

Process replication is a special case of Lazy Shadowing
where α = 1, so we can use the above theorem to derive the
expected completion time for process replication using the
same amount of cores:

Corollary 2.1: The expected completion time for process
replication is Ttotal = 2W/N/(1−Pa).

Proof: Using process replication, half of the available
cores are dedicated to shadows so that the workload assigned
to each task is significantly increased, i.e., w = 2W/N.
Different from cases where α ≥ 2, failures do not incur
any delay except for application fatal failures. As a result,
without application fatal failure the completion time under
process replication is constant regardless of the number of
failures, i.e., Tc = T k

c = w = 2W/N. Finally, the expected
completion time considering the possibility of rollback is
Ttotal = Tc/(1−Pa) = 2W/N/(1−Pa).

C. Expected energy consumption

Power consumption consists of two parts, dynamic power,
pd , which exists only when a core is executing, and static
power, ps, which is constant as long as the machine is on.
This can be modeled as p = pd + ps. Note that in addition to
CPU leakage, other components, such as memory and disk,
also contribute to static power.

For process replication, all cores are running all the time
until the application is complete. Therefore, the expected
energy consumption, En, is proportional to the expected
execution time Ttotal :

En = N× p×Ttotal (4)

Even using the same amount of cores, Lazy Shadowing
can save power and energy, since main cores are idle during
the recovery time after each failure, and the shadows can
achieve forward progress through shadow leaping. During
normal execution, all the cores consume static power as
well as dynamic power. During recovery time, however, the
main cores are idle and consume only static power, while the
shadow cores first perform shadow leaping and then become
idle. Altogether, the expected energy consumption for Lazy
Shadowing can be modeled as

En = N× ps×Ttotal +N× pd×w+S× pl×Tl . (5)

with pl denoting the dynamic power consumption of each
core during shadow leaping and Tl the expected total time
spent on leaping.

VI. EVALUATION

Careful analysis of the models above leads us to identify
several important factors that determine the performance.
These factors can be classified into three categories, i.e.,
system, application, and algorithm. The system category
includes static power ratio ρ (ρ = ps/p), total number of
cores N, and MTBF of each core; the application category
is mainly the total workload, W ; and shadowing ratio α in
the algorithm category determines the number of main cores
and shadow cores (N =M+S and α=M/S). In this section,
we evaluate each performance metric of Lazy Shadowing,
with the influence of each of the factors considered.



A. Comparison to checkpointing and process replication

We compare with both process replication and checkpoint-
ing. The completion time with checkpointing is calculated
with Daly’s model [30] assuming 10 minutes for both
checkpointing and restart. The energy consumption is then
derived with Equation 4. It is important to point out that we
always assume the same number of cores, so that process
replication and Lazy Shadowing do not use extra cores for
the replicas.

It is clear from THEOREM 1 that the total recovery delay
∑

k
i=1 τi is determined by the execution time ∑

k
i=1 ∆i, indepen-

dent of the distribution of failures. Therefore, our models are
generic with no assumption about failure probability distri-
bution, and the expectation of the total delay from all failures
is the same as if failures are uniformly distributed [30].
Specifically, ∆i = w/(k+1), and T k

c = w+w∗(1−σb
s )∗ k

k+1 .
Further, we assume that each shadow gets a fair share of its
core’s execution rate so that σb

s =
1
α

. To calculate Equation 5,
we assume that the dynamic power during shadow leaping is
twice of that during normal execution, i.e., pl = 2∗ pd , and
the time for shadow leaping is half of the recovery time, i.e.,
Tl = 0.5∗ (Ttotal−w).

The first study uses N = 1 million cores, W = 1 million
hours, and static power ratio ρ = 0.5. Our results show that
at extreme-scale, the completion time and energy consump-
tion of checkpointing are orders of magnitude larger than
those of Lazy Shadowing and process replication. Thus, we
choose not to plot a separate graph for checkpointing in
the interest of space. Figure 4(a) reveals that the most time
efficient choice largely depends on MTBF. When MTBF
is high, Lazy Shadowing requires less time as more cores
are used for main processes and less workload is assigned
to each process. As MTBF decreases, process replication
outperforms Lazy Shadowing as a result of the increased
likelihood of rollback for Lazy Shadowing. In terms of
energy consumption, Lazy Shadowing has much more ad-
vantage over process replication. For MTBF from 2 to 25
years, Lazy Shadowing with α = 5 can achieve 9.6-17.1%
energy saving, while the saving increases to 13.1- 23.3%
for α = 10. The only exception is when MTBF is extremely
low (1 year), Lazy Shadowing with α = 10 consumes more
energy because of extended execution time.

B. Impact of the number of cores

The system scale, measured in number of cores, has a
direct impact on the failure rate seen by the application.
To study its impact, we vary N from 10,000 to 1,000,000
with W scaled proportionally, i.e., W = N. When MTBF is 5
years, the results are shown in Figure 5. Please note that the
time and energy for checkpointing when N = 1,000,000 are
beyond the scope of the figures, so we mark their values on
top of their columns. When completion time is considered,
Figure 5(a) clearly shows that each of the three fault toler-
ance alternatives has its own advantage. Specifically, check-
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Figure 4: Comparison of time and energy for different core level
MTBF. W = 106 hours, N = 106, ρ = 0.5.

pointing is the best choice for small systems at the scale
of 10,000 cores, Lazy Shadowing outperforms others for
systems with 100,000 cores, while process replication has
slight advantage over Lazy Shadowing for larger systems.
On the other hand, Lazy Shadowing wins for all system
sizes when energy consumption is the objective.

When MTBF is changed to 25 years, the performance of
checkpointing improves a lot, but is still much worse than
that of the other two approaches. Lazy Shadowing benefits
much more than process replication from the increased
MTBF. As a result, Lazy Shadowing is able to achieve
shorter completion time than process replication when N
reaches 1,000,000.

C. Impact of workload

To a large extent, workload determines the time exposed
to failures. With other factors being the same, an application
with a larger workload is likely to encounter more failures
during its execution. Fixing N at 1,000,000, we increase
W from 1,000,000 hours to 12,000,000 hours. Figure 6
assumes a MTBF of 25 years and shows both the time
and energy. Checkpointing has the worst performance in
all cases. In terms of completion time, process replication
is more efficient when workload reaches 6,000,000 hours.
Considering energy consumption, however, Lazy Shadowing
is able to achieve the most saving in all cases.

D. Impact of static power ratio

With various architectures and organizations, servers vary
in terms of power consumption. The static power ratio ρ is
used to abstract the amount of static power consumed versus



(a) Expected completion time

(b) Expected energy consumption

Figure 5: Comparison of time and energy for different number of
cores. W = N, MTBF=5 years, ρ = 0.5.

(a) Expected completion time

(b) Expected energy consumption

Figure 6: Comparison of time and energy for different workloads.
N = 106, MTBF=25 years, ρ = 0.5.

dynamic power. Considering modern systems, we vary ρ

from 0.3 to 0.7 and study its effect on the expected energy
consumption. The results for Lazy Shadowing with α = 5
are normalized to that of process replication and shown in
Figure 7. The results for other values of α have similar
behavior and thus are not shown. Lazy Shadowing achieves
more energy saving when static power ratio is low, since
it saves dynamic power but not static power. When static

Figure 7: Impact of static power ratio on energy consumption.
W = 106 hours, N = 106, α=5.
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power ratio is low (ρ = 0.3), Lazy Shadowing is able to
save 20%-24% energy for the MTBF of 5 to 25 years. The
saving decreases to 5%-11% when ρ reaches 0.7.

E. Adding collocation overhead

Lazy Shadowing increases memory requirement1 when
multiple shadows are collocated. Moreover, this may have
an impact on the execution rate of the shadows due to
cache contention and context switch. To capture this effect,
we re-model the rate of shadows as σb

s = 1
α1.5 . Figure 8

shows the impact of collocation overhead on expected en-
ergy consumption for Lazy Shadowing with α = 5, with
all the values normalized to that of process replication.
As expected, energy consumption is penalized because of
slowing down of the shadows. It is surprising, however, that
the impact is quite small, with the largest difference being
4.4%. The reason is that shadow leaping can take advantage
of the recovery time after each failure and achieve forward
progress for shadow processes that fall behind. The results
for other values of α have similar behavior. When α = 10,
the largest difference further decreases to 2.5%.

VII. CONCLUSION

As the scale and complexity of HPC systems continue
to increase, both the failure rate and energy consumption
are expected to increase dramatically, making it extremely
challenging to deliver extreme-scale computing performance

1Note that this problem is not intrinsic to Lazy Shadowing, as in-memory
checkpointing also requires extra memory.



efficiently. Existing fault tolerance methods rely on either
time or hardware redundancy.

Lazy Shadowing is a novel algorithm that can serve
as an efficient and scalable alternative to achieve high-
levels of fault tolerance for future extreme-scale computing.
In this paper, we present a comprehensive discussion of
the techniques that enable Lazy Shadowing. In addition,
we develop a series of analytical models to assess its
performance in terms of reliability, completion time, and
energy consumption. Through comparison with existing fault
tolerance approaches, we identify the scenarios where each
of the alternatives should be chosen.

In the future, we plan to explore the combination of Lazy
Shadowing with Checkpointing, so that if an application fatal
failure occurs computation can restart from an intermediate
state. Another future direction is to use dynamic and par-
tial shadowing for platforms where nodes exhibit different
“health” status, e.g., some nodes may be more reliable while
others are more likely to fail [31]. With this taken into
account, we can apply dynamic scheduling of shadows only
for mains that are likely to fail, to further reduce the resource
requirement for shadowing.
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