
5.3    SUBSTRING SEARCH

A fundamental operation on strings is substring search: given a text string of length 
N and a pattern string of length M, find an occurrence of the pattern within the text. 
Most algorithms for this problem can easily be extended to find all occurrences of the 
pattern in the text, to count the number of occurrences of the pattern in the text, or to 
provide context (substrings of the text surrounding each occurrence of the pattern). 

When you search for a word while using a text editor or a web browser, you are doing 
substring search. Indeed, the original motivation for this problem was to support such 
searches. Another classic application is searching for some important pattern in an in-
tercepted communication. A military leader might be interested in finding the pattern 
A T T A C K  A T  D A W N  somewhere in an intercepted text message; a hacker might be 
interested in finding the pattern P a s s w o r d :  somewhere in your computer’s mem-
ory. In today’s world, we are often searching through the vast amount of information 
available on the web. 

To best appreciate the algorithms, think of the pattern as being relatively short (with 
M equal to, say, 100 or 1,000) and the text as being relatively long (with N equal to, say, 
1 million or 1 billion). In substring search, we typically preprocess the pattern in order 
to be able to support fast searches for that pattern in the text.

Substring search is an interesting and classic problem: several very different (and 
surprising) algorithms have been discovered that not only provide a spectrum of use-
ful practical methods but also illustrate a spectrum of fundamental algorithm design 
techniques.

Substring search 
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A short history The algorithms that we examine have an interesting history; we 
summarize it here to help place the various methods io perspective.

There is a simple brute-force algorithm for substring search that is in widespread 
use. While it has a worst-case running time proportional to MN, the strings that arise 
in many applications lead to a running time that is (except in pathological cases) pro-
portional to M � N. Furthermore, it is well-suited to standard architectural features on 
most computer systems, so an optimized version provides a standard benchmark that 
is difficult to beat, even with a clever algorithm.

In 1970,  S. Cook proved a theoretical result about a particular type of abstract ma-
chine that implied the existence of an algorithm that solves the substring search prob-
lem in time proportional to M � N in the worst case.  D. E. Knuth and  V. R. Pratt labori-
ously followed through the construction Cook used to prove his theorem (which was 
not intended to be practical) and refined it into a relatively simple and practical algo-
rithm. This seemed a rare and satisfying example of a theoretical result with immediate 
(and unexpected) practical applicability. But it turned out that  J. H. Morris had discov-
ered virtually the same algorithm as a solution to an annoying problem confronting 
him when implementing a text editor (he wanted to avoid having to “back up’’ in the 
text string). The fact that the same algorithm arose from two such different approaches 
lends it credibility as a fundamental solution to the problem.

Knuth, Morris, and Pratt didn’t get around to publishing their algorithm until 1976, 
and in the meantime  R. S. Boyer and  J. S. Moore (and, independently,  R. W. Gosper) 
discovered an algorithm that is much faster in many applications, since it often exam-
ines only a fraction of the characters in the text string. Many text editors use this algo-
rithm to achieve a noticeable decrease in response time for substring search.

Both the Knuth-Morris-Pratt (KMP) and the Boyer-Moore algorithms require some 
complicated preprocessing on the pattern that is difficult to understand and has lim-
ited the extent to which they are used. (In fact, the story goes that an unknown systems 
programmer found Morris’s algorithm too difficult to understand and replaced it with 
a brute-force implementation.)

In 1980,  M. O. Rabin and  R. M. Karp used hashing to develop an algorithm almost as 
simple as the brute-force algorithm that runs in time proportional to M � N  with very 
high probability. Furthermore, their algorithm extends to two-dimensional patterns 
and text, which makes it more useful than the others for image processing.

This story illustrates that the search for a better algorithm is still very often justified; 
indeed, one suspects that there are still more developments on the horizon even for this 
classic problem.
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Brute-force substring search An obvious method for substring search is to 
check, for each possible position in the text at which the pattern could match, whether 
it does in fact match.  The search() method below operates in this way to find the first 
occurrence of a pattern string pat in a text string txt. The program keeps one pointer 

(i) into the text and another point-
er (j) into the pattern. For each i, it 
resets j to 0 and increments it until 
finding a mismatch or the end of 
the pattern (j == M). If we reach 
the end of the text (i == N-M+1) 
before the end of the pattern, then 
there is no match: the pattern does 
not occur in the text. Our conven-
tion is to return the value N to indi-
cate a mismatch.

In a typical text-processing ap-
plication, the j index rarely incre-
ments so the running time is pro-
portional to N. Nearly all of the 

  

 

compares find a mismatch with the first character of the pattern. For example, suppose 
that you search for the pattern pattern in the text of this paragraph. There are 191 
characters up to the end of the first occurrence of the pattern, only 7 of which are the 
character p (and there are no occurrences of pa), so the total number of character com-
pares is 191+7, for an average of 1.036 compares per character in the text. On the other 
hand, there is no guarantee that the algorithm will always be so efficient. For example, a 
pattern might begin with a long string of As. If it does, and the text also has long strings 
of As, then the substring search 
will be slow.

public static int search(String pat, String txt) 
{
   int M = pat.length();
   int N = txt.length();
   for (int i = 0; i <= N - M; i++)
   {   
      int j;
      for (j = 0; j < M; j++)
         if (txt.charAt(i+j) != pat.charAt(j))
            break;
      if (j == M) return i;  // found
   }
   return N;                 // not found 
}

Brute-force substring search

Brute-force substring search

i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 

 1   0   1      A  B  R  A 

 2   1   3         A  B  R  A 

 3   0   3            A  B  R  A 

 4   1   5               A  B  R  A 

 5   0   5                  A  B  R  A 

6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match
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Proposition M. Brute-force  substring search requires ~NM character compares to 
search for a pattern of length M in a text of length N, in the worst case.

Proof: A worst-case input is when both pattern and text are all As followed by a B. 
Then for each of the  N � M � 1 possible match positions, all the characters in the 
pattern are checked against the text, for a total cost of M(N � M � 1). Normally M
is very small compared to N, so the total is ~NM. 

Such degenerate strings are not likely to appear in English text, but they may well occur 
in other applications (for example, in binary texts), so we seek better algorithms.

The alternate implementation at 
the bottom of this page is instructive. 
As before, the program keeps one 
pointer (i) into the text and another 
pointer (j) into the pattern. As long 
as they point to matching characters, 
both pointers are incremented. This 
code performs precisely the same 
character compares as the previous 
implementation. To understand it, 

note that i in this code maintains the value of i+j in the previous code: it points to the 
end of the sequence of already-matched characters in the text (where i pointed to the 
beginning of the sequence before). If i and j point to mismatching characters, then we 
back up both pointers: j to point to the beginning of the pattern and i to correspond to 
moving the pattern to the right one position for matching against the text. 

public static int search(String pat, String txt) 
{
   int j, M = pat.length();
   int i, N = txt.length();
   for (i = 0, j = 0; i < N && j < M; i++)
   {
      if (txt.charAt(i) == pat.charAt(j)) j++;
      else { i -= j; j = 0;  }
   }
   if (j == M) return i - M;  // found  
   else            return N;  // not found 
}

Alternate implementation of brute-force substring search (explicit backup)

Brute-force substring search (worst case)

i   j  i+j   0  1  2  3  4  5  6  7  8  9

              A  A  A  A  A  A  A  A  A  B 

 0   4   4    A  A  A  A  B 

 1   4   5       A  A  A  A  B 

 2   4   6          A  A  A  A  B 

 3   4   7             A  A  A  A  B 

 4   4   8                A  A  A  A  B 

5   5  10                   A  A  A  A  B

   

txt

pat
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  Knuth-Morris-Pratt substring search The basic idea behind the algorithm 
discovered by Knuth, Morris, and Pratt is this: whenever we detect a mismatch, we 
already know some of the characters in the text (since they matched the pattern charac-
ters prior to the mismatch). We can take advantage of this information to avoid backing 
up the text pointer over all those known characters. 

As a specific example, suppose that we have a two-character alphabet and are search-
ing for the pattern B A A A A A A A A A. Now, suppose that we match five char-
acters in the pattern, with a mismatch on the sixth. When the mismatch is detected, 

we know that the six previous 
characters in the text must 
be B A A A A B (the first 
five match and the sixth does 
not), with the text pointer 
now pointing at the B at the 
end. The key observation is 
that we need not back up the 
text pointer i, since the previ-
ous four characters in the text 
are all As and do not match 
the first character in the pat-
tern. Furthermore, the char-
acter currently pointed to by 

i is a B and does match the first character in the pattern, so we can increment i and 
compare the next character in the text with the second character in the pattern. This 
argument leads to the observation that, for this pattern, we can change the else clause 
in the alternate brute-force implementation to just set j = 1 (and not decrement i). 
Since the value of i does not change within the loop, this method does at most N char-
acter compares. The practical effect of this particular change is limited to this particular 
pattern, but the idea is worth thinking about—the Knuth-Morris-Pratt algorithm is a 
generalization of it. Surprisingly, it is always possible to find a value to set the j pointer 
to on a mismatch, so that the i pointer is never decremented.

Fully skipping past all the matched characters when detecting a mismatch will not 
work when the pattern could match itself at any position overlapping the point of the 
mismatch. For example, when searching for the pattern A A B A A A in the text 
A A B A A B A A A A, we first detect the mismatch at position 5, but we had better 
restart at position 3 to continue the search, since otherwise we would miss the match. 
The insight of the KMP algorithm is that we can decide ahead of time exactly how to 
restart the search, because that decision depends only on the pattern.

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A

      B  A  A  A  A  A  A  A  A  A 

         B  A  A  A  A  A  A  A  A  A 

            B  A  A  A  A  A  A  A  A  A 

               B  A  A  A  A  A  A  A  A  A 

                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern
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Backing up the pattern pointer. In KMP sub-
string search, we never back up the text pointer 
i, and we use an array dfa[][] to record how 
far to back up the pattern pointer j when a 
mismatch is detected. For every character c, 
dfa[c][j] is the pattern position to compare 
against the next text position after compar-
ing c with pat.charAt(j). During the search, 
dfa[txt.charAt(i)][j] is the pattern position 
to compare with txt.charAt(i+1) after com-
paring txt.charAt(i) with pat.charAt(j). 
For a match, we want to just move on to the 
next character, so dfa[pat.charAt(j)][j] is 
always j+1. For a mismatch, we know not just 
txt.charAt(i), but also the j-1 previous char-
acters in the text: they are the first j-1 characters 
in the pattern. For each character c, imagine that 
we slide a copy of the pattern over these j char-
acters (the first j-1 characters in the pattern fol-
lowed by c—we are deciding what to do when 
these characters are txt.charAt(i-j+1..i)), 
from left to right, stopping when all overlap-
ping characters match (or there are none). 
This gives the next possible place the pattern 
could match. The index of the pattern char-
acter to compare with txt.charAt(i+1)

(dfa[txt.charAt(i)][j]) is precisely the 
number of overlapping characters.

KMP search method. Once we have computed 
the dfa[][] array, we have the substring search 
method at the top of the next page: when i and 
j point to mismatching characters (testing for a 
pattern match beginning at position i-j+1 in the text string), then the next possible 
position for a pattern match is beginning at position  i-dfa[txt.charAt(i)][j]. But 
by construction, the first dfa[txt.charAt(i)][j] characters at that position match 
the first dfa[txt.charAt(i)][j] characters of the pattern, so there is no need to back 
up the i pointer: we can simply set j to dfa[txt.charAt(i)][j] and increment i, 
which is precisely what we do when i and j point to matching characters. 

A B A B A C

A
B
A B A B A C

C
A B A B A C

A B
A A
A B A B A C

A C
 A B A B A C

A B A
A B B
   A B A B A C
A B C
   A B A B A C

A B A B
A B A A
   A B A B A C
A B A C
    A B A B A C

A B A B A
A B A B B
    A B A B A C
A B A B C
    A B A B A C

A B A B A C
A B A B A A
     A B A B A C
A B A B A B
  A B A B A C

j  pat.charAt(j)  dfa[][j]
               A  B  C

0      A       1  
               
                  0

                     0 
     
1      B          2 
           
               1

                     0

2      A       3
              
                  0

                     0

3      B          4
           
               1

                     0
     
4      A       5
              
                  0 

                     0
     
5      C             6    
           
               1

                  4
     

Pattern backup for A B A B A C  in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1 
known text char

on mismatch

text (pattern itself)

mismatch
(back up in pattern)
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 DFA simulation. A useful way to describe this process is in terms of a deterministic 
finite-state automaton (DFA). Indeed, as indicated by its name, our dfa[][] array pre-
cisely defines a DFA. The graphical DFA represention shown at the bottom of this page 

consists of states (indicated by circled 
numbers) and transitions (indicated by 
labeled lines). There is one state for each 
character in the pattern, each such state 
having one transition leaving it for each 
character in the alphabet. For the sub-
string-matching DFAs that we are con-
sidering, one of the transitions is a match
transition (going from j to j+1 and labeled 
with pat.charAt(j)) and all the others 

are mismatch transition (going left). The states correspond to character compares, one 
for each value of the pattern index. The transitions correspond to changing the value 
of the pattern index. When examining the text character i when in the state labeled j, 
the machine does the following: “Take the transition to dfa[txt.charAt(i)][j] and 
move to the next character (by incrementing i).’’ For a match transition, we move to 
the right one position because dfa[pat.charAt(j)][j] is always j+1; for a mismatch 
transition we move to the left. The automaton reads the text characters one at a time, 
from left to right, moving to a new state each time it reads a character. We also include a 
halt state M that has no transitions. We start the machine at state 0: if the machine reach-

es state M, then a substring of the text 
matching the pattern has been found 
(and we say that the DFA recognizes the 
pattern); if the machine reaches the 
end of the text before reaching state 
M, then we know the pattern does not 
appear as a substring of the text. Each 
pattern corresponds to an automaton 
(which is represented by the dfa[][]
array that gives the transitions). The 
KMP substring search() method is 
a Java program that simulates the op-
eration of such an automaton. 

To get a feeling for the operation of 
a substring search DFA, consider two 
of the simplest things that it does. At 

public int search(String txt) 
{  // Simulate operation of DFA on txt.
   int i, j, N = txt.length();
   for (i = 0, j = 0; i < N && j < M; i++)
      j = dfa[txt.charAt(i)][j];
   if (j == M) return i - M;  // found
   else        return N;      // not found 
}

KMP substring search (DFA simulation)

DFA corresponding to the string A  B  A  B  A  C 

match
transition

(increment)

mismatch
transition
(back up)

halt state

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]

pat.charAt(j)

j

A
B

C

graphical representation

internal representation

B
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the beginning of the process, when started in state 0 at the beginning of the text, it stays 
in state 0, scanning text characters, until it finds a text character that is equal to the first 
pattern character, when it moves to the next state and is off and running. At the end of 
the process, when it finds a match, it matches pattern characters with the right end of 
the text, incrementing the state until reaching state M. The trace at the top of this page 
gives a typical example of the operation of our example DFA. Each match moves the 
DFA to the next state (which is equivalent to incrementing the pattern index j); each 
mismatch moves the DFA to an earlier state (which is equivalent to setting the pattern 
index j to a smaller value). The text index i marches from left to right, one position at 
a time, while the pattern index j bounces around in the pattern as directed by the DFA.

Constructing the DFA. Now that you understand the mechanism, we are ready to ad-
dress the key question for the KMP algorithm: How do we compute the dfa[][] array 
corresponding to a given pattern? Remarkably, the answer to this question lies in the 
DFA itself   (!) using the ingenious (and rather tricky) construction that was developed 
by Knuth, Morris, and Pratt. When we have a mismatch at pat.charAt(j), our interest 
is in knowing in what state the DFA would be if we were to back up the text index and 
rescan the text characters that we just saw after shifting to the right one position. We do 
not want to actually do the backup, just restart the DFA as if we had done the backup. 

A  B  A  B  A  C

   A  B  A  B  A  C

      A  B  A  B  A  C

         A  B  A  B  A  C

         A  B  A  B  A  C

            A  B  A  B  A  C

            A  B  A  B  A  C

            A  B  A  B  A  C

                        A  B  A  B  A  C

                        A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

Trace of KMP substring search (DFA simulation) for A  B  A  B  A  C

         0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16

         B  C  B  A  A  B  A  C  A  A  B  A  B  A  C  A  A 

         0  0  0  0  1  1  2  3  0  1  1  2  3  4  5  6

                                        

found
return i - M = 9

mismatch:
    set j to dfa[txt.charAt(i)][j]
         implies pattern shift to align
    pat.charAt(j) with
    txt.charAt(i+1)

match:
  set j to  dfa[txt.charAt(i)][j] 
     = dfa[pat.charAt(j)][j]
     = j+1

read this char

in this state

go to this state

i

txt.charAt(i)

j
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The key observation is that the characters in the text that would need to be rescanned 
are precisely pat.charAt(1) through pat.charAt(j-1): we drop the first character 
to shift right one position and the last character because of the mismatch. These are 

pattern characters that we know, so we can figure out ahead of 
time, for each possible mismatch position, the state where we 
need to restart the DFA. The figure at left shows the possibilities 
for our example. Be sure that you understand this concept. 

What should the DFA do with the next character? Exactly 
what it would have done if we had backed up, except if it finds 
a match with pat.charAt(j), when it should go to state j+1. 
For example, to decide what the DFA should do when we have 
a mismatch at j = 5 for A B A B A C, we use the DFA to learn 
that a full backup would leave us in state 3 for B A B A, so we 
can copy dfa[][3] to dfa[][5], then set the entry for C to 6
because pat.charAt(5) is C (a match). Since we only need to 
know how the DFA runs for j-1 characters when we are build-
ing the jth state, we can always get the information that we need 

from the partially built DFA.
The final crucial detail to the computation is to observe that maintaining the restart 

position X when working on column j of dfa[][] is easy because X < j so that we can use 
the partially built DFA to do the job—the next value of X is dfa[pat.charAt(j)][X]). 
Continuing our example from the previous paragraph, we would update the value of 
X to dfa['C'][3] = 0 (but we do not use that value because the DFA construction is 
complete).

The discussion above leads to the remarkably compact code below for constructing 
the DFA corresponding to a given pattern. For each j, it

Copies dfa[][X] to dfa[][j] (for mismatch cases)
Sets dfa[pat.charAt(j)][j] to j+1 (for the match case)
Updates X

The diagram on the facing page traces 
this code for our example.  To make sure 
that you understand it, work Exercise 
5.3.2 and Exercise 5.3.3.

dfa[pat.charAt(0)][0] = 1; 
for (int X = 0, j = 1; j < M; j++) 
{  // Compute dfa[][j].
   for (int c = 0; c < R; c++)
      dfa[c][j] = dfa[c][X];
   dfa[pat.charAt(j)][j] = j+1;

   X = dfa[pat.charAt(j)][X]; 
}

Constructing the DFA for KMP substring search

DFA simulations to compute

restart states for A  B  A  B  A  C

  A   B   A   B   A

      0   0   1   2   3   

  A   B   A   B

      0   0   1   2 

  A   B   A 

      0   0   1  

  A   B   

      0   0  

  A   

      0  
restart
states
X

1

2

3

4

5
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Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B
C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B

C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

     0   1   2   3   4
     A   B   A   B   A
     1   1   3   1   5
     0   2   0   4   0
     0   0   0   0   0

dfa[][j]
A
B

C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

     0   1   2   3 
     A   B   A   B
     1   1   3   1 
     0   2   0   4
     0   0   0   0

dfa[][j]
A
B

C

X

0 1 2 3A B A

B,CC

B,C A

     0   1   2   
     A   B   A 
     1   1   3 
     0   2   0
     0   0   0

dfa[][j]
A
B

C

X

0 1 2A B

C

B,C A     0   1
     A   B
     1   1
     0   2
     0   0

dfa[][j]
A
B

C

X

0 1A

B,C     0 
     A 
     1 
     0 
     0 

dfa[][j]

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

A
B

C

copy dfa[][X] to dfa[][j]

dfa[pat.charAt(j)][j] = j+1;

X = dfa[pat.charAt(j)][X];
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ALGORITHM 5.6  Knuth-Morris-Pratt substring search

public class  KMP 
{
   private String pat;
   private int[][] dfa;

   public KMP(String pat)
   {  // Build DFA from pattern.
      this.pat = pat;
      int M = pat.length();
      int R = 256;
      dfa = new int[R][M];
      dfa[pat.charAt(0)][0] = 1;
      for (int X = 0, j = 1; j < M; j++)
      {  // Compute dfa[][j].
         for (int c = 0; c < R; c++)
            dfa[c][j] = dfa[c][X];            // Copy mismatch cases.
         dfa[pat.charAt(j)][j] = j+1;         // Set match case.
         X = dfa[pat.charAt(j)][X];           // Update restart state.
      }
   }

   public int search(String txt)
   {  // Simulate operation of DFA on txt.
      int i, j, N = txt.length(), M = pat.length();
      for (i = 0, j = 0; i < N && j < M; i++)
         j = dfa[txt.charAt(i)][j];
      if (j == M) return i - M;  // found (hit end of pattern)
      else        return N;      // not found (hit end of text)
   }

   public static void main(String[] args)
   // See page 769. 
}

 
The constructor in this implementation of the Knuth-Morris-Pratt algorithm for substring search 
builds a DFA from a pattern string, to support a search() method that can find the pattern in a given 

text string. This program does the same job as the brute-force method, but it runs faster for patterns 

that are self-repetitive.
% java KMP AACAA AABRAACADABRAACAADABRA 
text:    AABRAACADABRAACAADABRA 
pattern:             AACAA 
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Algorithm 5.6 on the facing page implements the following API:

public class  KMP

KMP(String pat) create a DFA that can search for pat 

int search(String txt) find index of pat in txt 

Substring search API

You can see a typical test client at the bottom of this page. The constructor builds a DFA 
from a pattern that the search() method uses to search for the pattern in a given text.

Proposition N.  Knuth-Morris-Pratt substring search accesses no more than M � N
characters to search for a pattern of length M in a text of length N.

Proof. Immediate from the code: we access each pattern character once when com-
puting dfa[][] and each text character once (in the worst case) in search(). 

Another parameter comes into play: for an R-character alphabet, the total running time 
(and space) required to build the DFA is proportional to MR. It is possible to remove 
the factor of R by building a DFA where each state has a match transition and a mis-
match transition (not transitions for each possible character), though the construction 
is somewhat more intricate.

The linear-time worst-case guarantee provided by the KMP algorithm is a significant 
theoretical result. In practice, the speedup over the brute-force method is not often 
important because few applications involve searching for highly self-repetitive patterns 
in highly self-repetitive text. Still, the method 
has the practical advantage that it never backs 
up in the input. This property makes KMP 
substring search more convenient for use 
on an input stream of undetermined length 
(such as standard input) than algorithms re-
quiring backup, which need some complicat-
ed buffering in this situation. Ironically, when 
backup is easy, we can do significantly better 
than KMP. Next, we consider a method that 
generally leads to substantial performance 
gains precisely because it can back up in the 
text.

public static void main(String[] args) 
{
   String pat = args[0];
   String txt = args[1];
   KMP kmp = new KMP(pat);
   StdOut.println("text:    " + txt);
   int offset = kmp.search(txt);
   StdOut.print("pattern: ");
   for (int i = 0; i < offset; i++)
      StdOut.print(" ");
   StdOut.println(pat);

}

 KMP substring search test client
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  Boyer-Moore substring search When backup in the text string is not a prob-
lem, we can develop a significantly faster substring-searching method by scanning the   
pattern from right to left when trying to match it against the text. For example, when 
searching for the substring B A A B B A A , if we find matches on the seventh and sixth 
characters but not on the fifth, then we can immediately slide the pattern seven posi-
tions to the right, and check the 14th character in the text next, because our partial 
match found X A A  where X  is not B , which does not appear elsewhere in the pattern. In 
general, the pattern at the end might appear elsewhere, so we need an array of restart 
positions as for Knuth-Morris-Pratt. We will not explore this approach in further detail 
because it is quite similar to our implementation of the Knuth-Morris-Pratt method. 
Instead, we will consider another suggestion by Boyer and Moore that is typically even 
more effective in right-to-left pattern scanning.

As with our implementation of KMP substring search, we decide what to do next on 
the basis of the character that caused the mismatch in the text as well as the pattern. The 
preprocessing step is to decide, for each possible character that could occur in the text, 
what we would do if that character were to cause the mismatch. The simplest realiza-
tion of this idea leads immediately to an efficient and useful substring search method. 

 Mismatched character heuristic. Consider the figure at the bottom of this page, which 
shows a search for the pattern N E E D L E  in the text F I N D I N A H A Y S T A C K N E E D L E . 
Proceeding from right to left to match the pattern, we first compare the rightmost E in 
the pattern with the N (the character at position 5) in the text. Since N appears in the 
pattern, we slide the pattern five positions to the right to line up the N in the text with 
the (rightmost) N in the pattern. Then we compare the rightmost E in the pattern with 
the S (the character at position 10) in the text. This is also a mismatch, but S does not
appear in the pattern, so we can slide the pattern six positions to the right.We match 
the rightmost E in the pattern against the E at position 16 in the text, then find a mis-
match and discover the N at position 15 and slide to the right five positions, as at the 
beginning. Finally, we verify, moving from right to left starting at position 20, that the 
pattern is in the text. This method brings us to the match position at a cost of only four 
character compares (and six more to verify the match)!

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

 0   5   N  E  E  D  L  E

 5   5                  N  E  E  D  L  E

11   4                                    N  E  E  D  L  E

15   0                                                N  E  E  D  L  E 

   return i = 15

 pattern

 text
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Starting point. To implement the mismatched 
character heuristic, we use an array right[] that 
gives, for each character in the alphabet, the index 
of its rightmost occurrence in the pattern (or -1
if the character is not in the pattern). This value 
tells us precisely how far to skip if that character 
appears in the text and causes a mismatch during 
the string search. To initialize the right[] array, 
we set all entries to -1 and then, for j from 0 to 
M-1, set right[pat.charAt(j)] to j, as shown 
in the example at right for our example pattern 
N E E D L E . 

Substring search. With the right[] array pre-
computed, the implementation in Algorithm 5.7 is straightforward. We have an index 
i moving from left to right through the text and an index j moving from right to left 
through the pattern. The inner loop tests whether the pattern aligns with the text at 
position i. If txt.charAt(i+j) is equal to pat.charAt(j) for all j from M-1 down to 
0, then there is a match. Otherwise, there is a character mismatch, and we have one of 
the following three cases:

If the character causing the mismatch is 
not found in the pattern, we can slide the 
pattern j+1 positions to the right (incre-
ment i by j+1). Anything less would align 
that character with some pattern character.
Actually, this move aligns some known 
characters at the beginning of the pattern 
with known characters at the end of the 
pattern so that we could further increase 
i by precomputing a KMP-like table (see 
example at right).

 

If the character c causing the mismatch is 
found in the pattern, we use the right[] array to line up the pattern with the 
text so that character will match its rightmost occurrence in the pattern. To do 
so, we increment i by j minus right[c]. Again, anything less would align that 
text character with a pattern character it could not match (one to the right of its 
rightmost occurrence). Again, there is a possibility that we could do better with a 
KMP-like table, as indicated in the top example in the figure on page 773.

Boyer-Moore skip table computation

c right[c]

          N   E   E   D   L   E

          0   1   2   3   4   5

A    -1  -1  -1  -1  -1  -1  -1     -1

B    -1  -1  -1  -1  -1  -1  -1     -1

C    -1  -1  -1  -1  -1  -1  -1     -1

D    -1  -1  -1  -1   3   3   3      3

E    -1  -1   1   2   2   2   5      5

...                                 -1

L    -1  -1  -1  -1  -1   4   4      4

M    -1  -1  -1  -1  -1  -1  -1     -1

N    -1   0   0   0   0   0   0      0

...                                 -1

Mismatched character heuristic (mismatch not in pattern)

 increment i by j+1 

 reset j to M-1 

.  .  .  .  .  .  T  L  E  .  .  .  .  . 

         N  E  E  D  L  E

i

j

j

i+j

.  .  .  .  .  .  T  L  E  .  .  .  .  .

                     N  E  E  D  L  E

i
 could do better with

KMP-like table
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ALGORITHM 5.7  Boyer-Moore substring search (mismatched character heuristic)

public class  BoyerMoore 
{
   private int[] right;
   private String pat;

   BoyerMoore(String pat)
   {  // Compute skip table.
      this.pat = pat;
      int M = pat.length();
      int R = 256;
      right = new int[R];
      for (int c = 0; c < R; c++)
         right[c] = -1;                // -1 for chars not in pattern
      for (int j = 0; j < M; j++)      // rightmost position for
         right[pat.charAt(j)] = j;     //   chars in pattern
   }

   public int search(String txt)
   {  // Search for pattern in txt.
      int N = txt.length();
      int M = pat.length();
      int skip;
      for (int i = 0; i <= N-M; i += skip)
      {  // Does the pattern match the text at position i ?
         skip = 0;
         for (int j = M-1; j >= 0; j--)
            if (pat.charAt(j) != txt.charAt(i+j))
            {
               skip = j - right[txt.charAt(i+j)];
               if (skip < 1) skip = 1;
               break;
            }
         if (skip == 0) return i;          // found.   
      }
      return N;                            // not found.
    }

   public static void main(String[] args)  // See page 769. 
}

The constructor in this substring search algorithm builds a table giving the rightmost occurrence in 
the pattern of each possible character. The search method scans from right to left in the pattern, skip-
ping to align any character causing a mismatch with its rightmost occurrence in the pattern.

772 CHAPTER 5  Strings



If this computation would not in-
crease i, we just increment i instead, 
to make sure that the pattern always 
slides at least one position to the 
right. The bottom example in the fig-
ure at right illustrates this situation.

Algorithm 5.7 is a straightforward imple-
mentation of this process. Note that the 
convention of using -1 in the right[]
array entries corresponding to characters 
that do not appear in the pattern uni-
fies the first two cases (increment i by 
j - right[txt.charAt(i+j)]).

The full Boyer-Moore algorithm takes 
into account precomputed mismatches of 
the pattern with itself (in a manner simi-
lar to the KMP algorithm) and provides a 
linear-time worst-case guarantee (whereas 
Algorithm 5.7 can take time proportional 
to NM in the worst case—see Exercise 
5.3.19). We omit this computation because 
the mismatched character heuristic con-
trols the performance in typical practical 
applications. 

Property O. On typical inputs, substring search with the  Boyer-Moore mismatched 
character heuristic uses ~N�M character compares to search for a pattern of length 
M in a text of length N.

Discussion: This result can be proved for various random string models, but such 
models tend to be unrealistic, so we shall skip the details. In many practical situa-
tions it is true that all but a few of the alphabet characters appear nowhere in the 
pattern, so nearly all compares lead to M characters being skipped, which gives the 
stated result.

Mismatched character heuristic (mismatch in pattern) 

 increment i by j - right['N']
 to line up text with N in pattern

 reset j to M-1 

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .

         N  E  E  D  L  E

i

j

j

 reset j to M-1 
j

i+j

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .

                  N  E  E  D  L  E

i

basic idea

 lining up text with rightmost E
would shift pattern left

 could do better with
KMP-like table

 could do better with
KMP-like table

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .

         N  E  E  D  L  E

i

j

i+j

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .

   N  E  E  D  L  E

 so increment i by 1

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .

            N  E  E  D  L  E

i

heuristic is no help
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   Rabin-Karp fingerprint search The method developed by M. O. Rabin and 
R. A. Karp is a completely different approach to substring search that is based on hash-
ing.  We compute a hash function for the pattern and then look for a match by using 
the same hash function for each possible M-character substring of the text. If we find 
a text substring with the same hash value as the pattern, we can check for a match. 
This process is equivalent to storing the pattern in a hash table, then doing a search 
for each substring of the text, but we do not need to reserve the memory for the hash 
table because it would have just one entry.  A straightforward implementation based 
on this description would be much slower than a brute-force search (since comput-
ing a hash function that involves every character is likely to be much more expensive 
than just comparing characters), but Rabin and Karp showed that it is easy to compute 
hash functions for M-character substrings in constant time (after some preprocessing), 
which leads to a linear-time substring search in practical situations.

 Basic plan. A string of length M corresponds to an M-digit base-R number. To use a hash 
table of size Q for keys of this type, we need a hash function to convert an M-digit base-R
number to an int value between 0 and Q-1.  Modular hashing (see Section 3.4) pro-
vides an answer: take the remainder when dividing the number by Q. In practice, we use 
a random  prime Q, taking as large a value as possible while avoiding overflow (because 
we do not actually need to store a hash table). The method is simplest to understand for 
small Q and R = 10, shown in the example below.  To find the pattern 2 6 5 3 5  in the 
text 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 , we choose a table size Q (997 in the example), compute 
the hash value 26535 % 997 = 613, and then look for a match by computing hash val-

ues for each five-digit substring 
in the text. In the example, we 
get the hash values 508, 201, 715, 
971, 442, and 929 before finding 
the match 613. 

Computing the  hash func-
tion. With five-digit values, we 
could just do all the necessary 
calculations with int values, but 
what do we do when M is 100 or 
1,000? A simple application of 
Horner’s method, precisely like 
the method that we examined in 
Section 3.4 for strings and other 
types of keys with multiple values, Basis for Rabin-Karp substring search 

                      txt.charAt(i)

i    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

0    3  1  4  1  5  % 997 = 508

1       1  4  1  5  9  % 997 = 201

2          4  1  5  9  2  % 997 = 715

3             1  5  9  2  6  % 997 = 971

4                5  9  2  6  5  % 997 = 442

5                   9  2  6  5  3  % 997 = 929 

6                      2  6  5  3  5  % 997 = 613

     pat.charAt(j)

j    0  1  2  3  4

     2  6  5  3  5  % 997 = 613

                                              

 return i = 6

 match
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leads to the code shown at right, which computes the hash function for an M-digit base-
R number represented as a char array in time proportional to M. (We pass M as an argu-
ment so that we can use the method for both the pattern and the text, as you will see.) 
For each digit in the number, we multiply by R, add the digit, and take the remainder 
when divided by Q. For example, computing the 
hash function for our pattern using this process 
is shown at the bottom of the page. The same 
method can work for computing the hash func-
tions in the text, but the cost for the substring 
search would be a multiplication, addition, and 
remainder calculation for each text character, 
for a total of NM operations in the worst case, 
no improvement over the brute-force method.

Key idea. The Rabin-Karp method is based on efficiently computing the hash func-
tion for position i+1 in the text, given its value for position i. It follows directly from a 
simple mathematical formulation. Using the notation ti for txt.charAt(i), the num-
ber corresponding to the M-character substring of txt that starts at position i is

xi = ti R M�1 � ti+1 R M�2 � .  .  . � ti+M�1R 0

and we can assume that we know the value of h(xi) = xi mod Q . Shifting one position 
right in the text corresponds to replacing xi by

xi+1 =  (xi � ti R M�1) R � ti+M  .

We subtract off the leading digit, multiply by R, then add the trailing digit. Now, the 
crucial point is that we do not have to maintain the values of the numbers, just the 
values of their remainders when divided by Q. A fundamental property of the modu-
lus operation is that if we take the remainder when divided by Q after each arithmetic 
operation, then we get the same answer as if we were to perform all of the arithmetic 
operations, then take the remainder 
when divided by Q. We took advan-
tage of this property once before, 
when implementing modular hash-
ing with Horner’s method (see page 
460). The result is that we can effec-
tively move right one position in the 
text in constant time, whether M is 5 
or 100 or 1,000.

private long hash(String key, int M) 
{  // Compute hash for key[0..M-1].
   long h = 0;
   for (int j = 0; j < M; j++)
      h = (R * h + key.charAt(j)) % Q;
   return h; 
}

 Horner’s method, applied to modular hashing

Computing the hash value for the pattern with Horner’s method

         pat.charAt(j)

 i   0  1  2  3  4

     2  6  5  3  5

 0   2  % 997 = 2

 1   2  6  % 997 = (2*10 + 6) % 997 = 26

 2   2  6  5  % 997 = (26*10 + 5) % 997 = 265

 3   2  6  5  3  % 997 = (265*10 + 3) % 997 = 659

 4   2  6  5  3  5  % 997 = (659*10 + 5) % 997 = 613

QR
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Implementation. This discussion leads directly 
to the substring search implementation in Al-
gorithm 5.8. The constructor computes a hash 
value patHash for the pattern; it also computes 
the value of RM�1mod Q in the variable RM. The 
hashSearch() method begins by computing the 
hash function for the first M characters of the text 
and comparing that value against the hash value 
for the pattern. If that is not a match, it proceeds 
through the text string, using the technique above 
to maintain the hash function for the M charac-
ters starting at position i for each i in a variable 
txtHash and  comparing each new hash value to 
patHash. (An extra Q is added during the txtHash calculation to make sure that every-
thing stays positive so that the remainder operation works as it should.)  

A trick:    Monte Carlo correctness. After finding a hash value for an M-character sub-
string of txt that matches the pattern hash value, you might expect to see code to com-
pare those characters with the pattern to ensure that we have a true match, not just a 
hash collision. We do not do that test because using it requires backup in the text string. 
Instead, we make the hash table “size” Q as large as we wish, since we are not actually 
building a hash table, just testing for a collision with one key, our pattern. We will use 
a long value greater than 1020, making the probability that a random key hashes to the 

Rabin-Karp substring search example 

 i   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

 0   3  % 997 = 3

 1   3  1  % 997 = (3*10 + 1) % 997 = 31

 2   3  1  4  % 997 = (31*10 + 4) % 997 = 314

 3   3  1  4  1  % 997 = (314*10 + 1) % 997 = 150

 4   3  1  4  1  5  % 997 = (150*10 + 5) % 997 = 508

 5      1  4  1  5  9  % 997 = ((508 + 3*(997 - 30))*10 + 9) % 997 = 201

 6         4  1  5  9  2  % 997 = ((201 + 1*(997 - 30))*10 + 2) % 997 = 715

 7            1  5  9  2  6  % 997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

 8               5  9  2  6  5  % 997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442

 9                  9  2  6  5  3  % 997 = ((442 + 5*(997 - 30))*10 + 3) % 997 = 929

10                     2  6  5  3  5  % 997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

Q

RM R

 return i-M+1 = 6

 match

Key computation in Rabin-Karp substring search

(move right one position in the text)

 i   ...  2  3  4  5  6  7  ...

       1  4  1  5  9  2  6  5

          4  1  5  9  2  6  5

          

          4  1  5  9  2

       -  4  0  0  0  0

             1  5  9  2

                *  1  0

          1  5  9  2  0

                   +  6

          1  5  9  2  6

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value

new value
 text
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ALGORITHM 5.8  Rabin-Karp fingerprint substring search

public class  RabinKarp 
{
   private String pat;       // pattern (only needed for Las Vegas)
   private long patHash;     // pattern hash value 
   private int M;            // pattern length
   private long Q;           // a large prime
   private int R = 256;      // alphabet size
   private long RM;          // R^(M-1) % Q                                              

   public RabinKarp(String pat)
   {
      this.pat = pat;        // save pattern (only needed for Las Vegas)
      this.M = pat.length();
      Q = longRandomPrime();           // See Exercise 5.3.33.
      RM = 1;
      for (int i = 1; i <= M-1; i++)   // Compute R^(M-1) % Q for use
         RM = (R * RM) % Q;            //   in removing leading digit.
      patHash = hash(pat, M);
   }

   public boolean check(int i)  // Monte Carlo (See text.)
   {  return true;  }  //   For Las Vegas, check pat vs txt(i..i-M+1).

   private long hash(String key, int M)
   // See text (page 775).
   private int search(String txt)
   {  // Search for hash match in text.
      int N = txt.length();
      long txtHash = hash(txt, M);
      if (patHash == txtHash) return 0;            // Match at beginning.
      for (int i = M; i < N; i++)
      {  // Remove leading digit, add trailing digit, check for match.
         txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
         txtHash = (txtHash*R + txt.charAt(i)) % Q;
         if (patHash == txtHash)                    
           if (check(i - M + 1)) return i - M + 1; // match
      }
      return N;                                    // no match found
    } 
}

This substring search algorithm is based on hashing.  It computes a hash value for the pattern in the 
constructor, then searches through the text looking for a hash match.
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same value as our pattern less than 10–20, an exceedingly small value. If that value is not 
small enough for you, you could run the algorithms again to get a probability of fail-
ure of less than 10–40. This algorithm is an early and famous example of a Monte Carlo
algorithm that has a guaranteed completion time but fails to output a correct answer 
with a small probability. The alternative method of checking for a match could be slow 
(it might amount to the brute-force algorithm, with a very small probability) but is 
guaranteed correct. Such an algorithm is known as a   Las Vegas algorithm.

 

Property P. The Monte Carlo version of  Rabin-Karp substring search is linear-time 
and extremely likely to be correct, and the Las Vegas version of Rabin-Karp sub-
string search is correct and extremely likely to be linear-time.

Discussion: The use of the very large value of Q, made possible by the fact that we 
need not maintain an actual hash table, makes it extremely unlikely that a collision 
will occur. Rabin and Karp showed that when Q is properly chosen, we get a hash 
collision for random strings with probability 1/Q, which implies that, for practi-
cal values of the variables, there are no hash matches when there are no substring 
matches and only one hash match if there is a substring match. Theoretically, a text 
position could lead to a hash collision and not a substring match, but in practice it 
can be relied upon to find a match.

  

If your belief in probability theory (or in the random string model and the code we 
use to generate random numbers) is more half-hearted than resolute, you can add to 
check() the code to check that the text matches the pattern, which turns Algorithm 
5.8 into the Las Vegas version of the algorithm (see Exercise 5.3.12). If you also add a 
check to see whether that code is ever executed, you might develop more faith in prob-
ability theory as time wears on.

Rabin-Karp substring search is known as a fingerprint search because it uses a small 
amount of information to represent a (potentially very large) pattern. Then it looks 
for this fingerprint (the hash value) in the text. The algorithm is efficient because the 
fingerprints can be efficiently computed and compared. 
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Summary The table at the bottom of the page summarizes the algorithms that we 
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute-force search is easy 
to implement and works well in typical cases (Java’s  indexOf() method in String uses 
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in 
the input; Boyer-Moore is  sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional 
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a 
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods). These characteristics are summarized in the table below.

algorithm version 
operation count backup

in input? 
correct?

extra

spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA
(Algorithm 5.6 ) 2 N 1.1 N no yes MR

mismatch 
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char 
heuristic only

(Algorithm 5.7 )
M N N / M yes yes R

Rabin-Karp†

Monte Carlo
(Algorithm 5.8 ) 7 N 7 N no yes † 1

Las Vegas 7 N  † 7 N yes yes 1

† probabilisitic guarantee, with uniform and independent hash function

Cost summary for substring search implementations
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Q&A

Q. This substring search problem seems like a bit of a toy problem.  Do I really need to 
understand these complicated algorithms?

A. Well, the factor of M speedup available with Boyer-Moore can be quite impressive in 
practice. Also, the ability to stream input (no backup) leads to many practical applica-
tions for KMP and Rabin-Karp. Beyond these direct practical applications, this topic 
provides an interesting introduction to the use of abstract machines and randomiza-
tion in algorithm design.  

Q. Why not simplify things by converting each character to binary, treating all text as 
binary text?

A. That idea is not quite effective because of false matches across character boundaries. 
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EXERCISES

 

 

 

5.3.1  Develop a brute-force substring search implementation Brute, using the same 
API as Algorithm 5.6.

5.3.2  Give the dfa[][] array for the Knuth-Morris-Pratt algorithm for the pattern 
A A A A A A A A A, and draw the DFA, in the style of the figures in the text.

5.3.3  Give the dfa[][] array for the Knuth-Morris-Pratt algorithm for the pattern 
A B R A C A D A B R A, and draw the DFA, in the style of the figures in the text.

5.3.4 Write an efficient method that takes a string txt and an integer M as arguments 
and returns the position of the first occurrence of M consecutive blanks in the string, 
txt.length if there is no such occurrence. Estimate the number of character compares 
used by your method, on typical text and in the worst case.

5.3.5 Develop a brute-force substring search implementation BruteForceRL that pro-
cesses the pattern from right to left (a simplified version of Algorithm 5.7).

5.3.6 Give the right[] array computed by the constructor in Algorithm 5.7 for the 
pattern A B R A C A D A B R A.

5.3.7 Add to our brute-force implementation of substring search a count() method to 
count occurrences and a searchAll() method to print all occurrences.

5.3.8 Add to KMP a count() method to count occurrences and a searchAll() method 
to print all occurrences.

5.3.9 Add to BoyerMoore a count() method to count occurrences and a searchAll()
method to print all occurrences.

5.3.10 Add to RabinKarp a count() method to count occurrences and a searchAll()
method to print all occurrences.

5.3.11 Construct a worst-case example for the Boyer-Moore implementation in Algo-
rithm 5.7 (which demonstrates that it is not linear-time).

5.3.12  Add the code to check() in RabinKarp (Algorithm 5.8) that turns it into a 
Las Vegas algorithm (check that the pattern matches the text at the position given as 
argument).

5.3.13 In the Boyer-Moore implementation in Algorithm 5.7, show that you can set 
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right[c] to the penultimate occurrence of c when c is the last character in the pattern.

5.3.14 Develop versions of the substring search implementations in this section that 
use char[] instead of String to represent the pattern and the text.

5.3.15 Design a brute-force substring search algorithm that scans the pattern from 
right to left.

5.3.16 Show the trace of the brute-force algorithm in the style of the figures in the text  
for the following pattern and text strings

a. pattern: AAAAAAAB     text: AAAAAAAAAAAAAAAAAAAAAAAAB

b. pattern: ABABABAB     text: ABABABABAABABABABAAAAAAAA

5.3.17 Draw the KMP DFA for the following pattern strings.

a. AAAAAAB

b. AACAAAB

c. ABABABAB

d. ABAABAAABAAAB

e. ABAABCABAABCB

5.3.18 Suppose that the pattern and text are random strings over an alphabet of size 
R (which is at least 2). Show that the expected number of character compares for the 
brute-force method is (N � M + 1) (1 � R�M) / (1 � R�1) � 2(N � M + 1).

5.3.19  Construct an example where the Boyer-Moore algorithm (with only the mis-
matched character heuristic) performs poorly.

5.3.20 How would you modify the Rabin-Karp algorithm to determine whether any of 
a subset of k patterns (say, all of the same length) is in the text? 

Solution : Compute the hashes of the k patterns and store the hashes in a StringSET
(see Exercise 5.2.6). 

5.3.21 How would you modify the Rabin-Karp algorithm to search for a given pattern 
with the additional proviso that the middle character is a “wildcard” (any text character 

EXERCISES (continued)
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at all can match it).

5.3.22 How would you modify the Rabin-Karp algorithm to search for an H-by-V pat-
tern in an N-by-N text? 

5.3.23 Write a program that reads characters one at a time and reports at each instant 
if the current string is a  palindrome. Hint : Use the Rabin-Karp hashing idea.
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CREATIVE PROBLEMS

 

5.3.24  Find all occurrences. Add a method findAll() to each of the four substring 
search algorithms given in the text that returns an Iterable<Integer> that allows 
clients to iterate through all offsets of the pattern in the text.

5.3.25  Streaming. Add a search() method to KMP that takes variable of type In as 
argument, and searches for the pattern in the specified input stream without using any 
extra instance variables. Then do the same for RabinKarp. 

5.3.26   Cyclic rotation check. Write a program that, given two strings, determines 
whether one is a cyclic rotation of the other, such as example and ampleex.

5.3.27   Tandem repeat search. A tandem repeat of a base string b in a string s is a 
substring of s having at least two consecutive copies b (nonoverlapping). Develop and 
implement a linear-time algorithm that, given two strings b and s, returns the index of 
the beginning of the longest tandem repeat of b in s. For example, your program should 
return 3 when b is abcab and s is abcabcababcababcababcab. 

5.3.28  Buffering in brute-force search. Add a search() method to your solution to 
Exercise 5.3.1 that takes an input stream (of type In) as argument and searches for the 
pattern in the given input stream. Note : You need to maintain a buffer that can keep at 
least the previous M characters in the input stream. Your challenge is to write efficient 
code to initialize, update, and clear the buffer for any input stream.

5.3.29  Buffering in Boyer-Moore. Add a search() method to Algorithm 5.7 that 
takes an input stream (of type In) as argument and searches for the pattern in the given 
input stream.

5.3.30  Two-dimensional search. Implement a version of the Rabin-Karp algorithm to 
search for patterns in two-dimensional text. Assume both pattern and text are rect-
angles of characters.

5.3.31  Random patterns. How many character compares are needed to do a substring 
search for a random pattern of length 100 in a given text?

Answer: None. The method

public boolean search(char[] txt) 
{  return false; }
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    int i = -1; 
sm: i++; 
s0: if (txt[i]) != 'A' goto sm; 
s1: if (txt[i]) != 'A' goto s0; 
s2: if (txt[i]) != 'B' goto s0; 
s3: if (txt[i]) != 'A' goto s2; 
s4: if (txt[i]) != 'A' goto s0; 
s5: if (txt[i]) != 'A' goto s3;
    return i-8;

Straight-line substring search for A A B A A A

 

is quite effective for this problem, since the chances of a random pattern of length 100 
appearing in any text are so low that you may consider it to be 0.

5.3.32  Unique substrings. Solve Exercise 5.2.14 using the idea behind the Rabin-
Karp method.

5.3.33    Random  primes. Implement longRandomPrime() for RabinKarp (Algorithm 
5.8). Hint : A random n-digit number is prime with probability proportional to 1/n.

5.3.34  Straight-line code. The Java Virtual Machine (and your computer’s assembly 
language) support a goto instruction so that the search can be “wired in’’ to machine 
code, like the program at right (which is exactly equiva-
lent to simulating the DFA for the pattern as in KMPdfa, 
but likely to be much more efficient). To avoid check-
ing whether the end of the text has been reached each 
time i is incremented, we assume that the pattern it-
self is stored at the end of the text as a sentinel, as the 
last M characters of the text. The goto labels in this code 
correspond precisely to the dfa[] array. Write a static 
method that takes a pattern as input and produces as 
output a straight-line program like this that searches for 
the pattern.

5.3.35  Boyer-Moore in binary strings. The mismatched character heuristic does not 
help much for binary strings, because there are only two possibilities for characters that 
cause the mismatch (and these are both likely to be in the pattern). Develop a substring 
search class for binary strings that groups bits together to make “characters’’ that can 
be used exactly as in Algorithm 5.7. Note : If you take b bits at a time, then you need 
a right[] array with 2b entries. The value of b should be chosen small enough so that 
this table is not too large, but large enough that most b-bit sections of the text are not 
likely to be in the pattern—there are M�b�1 different b-bit sections in the pattern (one 
starting at each bit position from 1 through M�b�1), so we want M�b�1 to be sig-
nificantly less than 2b. For example, if you take 2b to be about lg (4M), then the right[]
array will be more than three-quarters filled with -1 entries, but do not let b become less 
than M/2, since otherwise you could miss the pattern entirely, if it were split between   
two b-bit text sections.
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EXPERIMENTS

5.3.36  Random text. Write a program that takes integers M and N as arguments, gener-
ates a random binary text string of length N, then counts the number of other occur-
rences of the last M bits elsewhere in the string. Note : Different methods may be appro-
priate for different values of M.

5.3.37  KMP for random text. Write a client that takes integers M, N, and T as input and 
runs the following experiment T times: Generate a random pattern of length M and a 
random text of length N, counting the number of character compares used by KMP to 
search for the pattern in the text. Instrument KMP to provide the number of compares, 
and print the average count for the T trials.

5.3.38  Boyer-Moore for random text. Answer the previous exercise for BoyerMoore.

5.3.39  Timings. Write a program that times the four methods for the task of searchng 
for the substring

it is a far far better thing that i do than i have ever done

in the text of Tale of Two Cities (tale.txt). Discuss the extent to which your results 
validate the hypthotheses about performance that are stated in the text.

786 CHAPTER 5  Strings



This page intentionally left blank 


