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So, what is an algorithm?

A stamp showing Persian 

mathematician Muhammad ibn 

Musa Al-Khwarizmi whose 

last name was transliterated to 

Algorithmi

Different definitions of an algorithm:

● an unambiguous specification of how to solve a 

class of problems. Algorithms can perform 

calculation, data processing and automated 

reasoning Wikipedia

● a set of rules for solving a problem in a finite 

number of steps, as for finding the greatest 

common divisor  Random House

● a procedure for solving a mathematical problem 

in a finite number of steps that frequently 

involves repetition of an operation  Merriam-

Webster

● a process or set of rules to be followed in 

calculations or other problem-solving operations, 

especially by a computer  Oxford
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Algorithms?

1. Focus upon problem-solving, not just venting

2. Build quality relationships with supportive people

3. Practice gratitude

4. Be kind to yourself, rather than overly self-critical 

5. Set meaningful goals 

6. Build intrinsic motivation

1. Break information into small chunks

2. Intensively concentrate on each chunk for at least 20 minutes

3. Take a break to let new material settle

4. Create a visual metaphor/story about each new concept 

5. Solve problems several times until stable connection in your brain is 
formed

Algorithm of happiness

Algorithm of success in STEM classes

Reference
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Algorithms in living systems 

(on biochemical hardware)

Code repository

Program execution

Algorithm LIFE

X←input()

If X =”tiger”
protein A=new Protein (TAAATA…)

Working copy of the code

AACCGCG  
TTCGCCT  

AAATATG  
CATCGAT

Output protein sequence

A   H  W  A   H   P   P   M  T   U   V   A T   M

Sequence-dependent  
folding
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In this course:

● We limit ourselves to algorithms for performing computational tasks

● The algorithms should be very precise and unambiguous, so they can 

be communicated to a machine

● Every computational problem is an algorithmic problem

Sample problem: compute min value in the array

public static <T extends Comparable<T>> 
T min (T [] input) {

 T result = null;
 for (T entry: input) {
  if (result == null ||   
    entry.compareTo(result) < 0)
   result = entry;
 }
 return result;
}
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Why study algorithms?

● Mastery of algorithms is required for all branches of Computer 

Science: Cryptography? Networks? Graphics? Bioinformatics? AI?

● Algorithms play a key role in innovations of modern life

● Challenging yourself is good for brain development

● Fun, addictive activity which can make you a better problem-solver 

in general

Rubik cube solving algorithm
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Algorithms that changed modern world

● Google search: page-rank 

● Online banking: concurrent transactions

● Online payments: public-key cryptography

● Reliable communication: error-correcting codes

● GPS systems: shortest paths
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We still need efficient algorithms

● Ancient consoles

● Mobile devices

● Browsers

• Big data  • Machine learning/AI • DNA analysis

Memory and processing power constraints

Ever more ambitious tasks
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What kind of algorithms:

Problem vs. problem instance

● Problem instances:
1. What is the position of element 11 in array 

A={2,10,4,1,3,11,33}?

2. What is the median of A?

● General algorithmic problems:
1. Given an array A of integers, and the target integer t find 

the position of the first occurrence of t in A

2. Given an array of integers A find its median

We are interested 
in solving these

Median is the middle value 
in the sorted array
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Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this course)

5. Estimate running time

6. Estimate space requirements

10



1. Formalizing problem

● Sample problem instance: what is the Greatest Common Divisor 

(GCD) of 12 and 99?

● Formalized general problem: input and output

We want it to work on large numbers:
gcd(3918848, 1653264)

Problem instance

Problem: Compute GCD

Input: 2 integers a, b. b > 1, a >1, a>b 
Output: gcd(a, b).
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2. Brainstorming

GCD: Formal Definition

For integers, a and b, their greatest common divisor or gcd(a, b) is the 

largest integer d s.t. d divides both a and b (without remainder).

Put fraction a/b into simplest form.

d should divide both a and b.

Want d to be as large as possible.

Why would we want to compute it:

Need to check remainders of (a/d) (b/d)

a=45, b=15

both 45 and 15 are 
divisible by 3, 5,15

we want to find 15

Go over an example
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Solution

We need to go over integers 1, 2, …

According to the problem and the definition of gcd:

Check if each such integer d divides both a 
and b without remainder

Keep the largest such number

Stop when d = min(a,b) = b 

Problem: Compute GCD

Input: 2 integers a, b. b > 1, a >1, a>b

Output: gcd(a, b).

a=45, b=15

both 45 and 15 are 
divisible by 3, 5,15

we want to find 15

This is algorithm in plain English
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Three ways of expressing

 algorithmic solutions

● English

● Pseudocode

● Program

Increasing 

precision
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Pseudocode: example

FOR i from 1 TO 100 DO

    IF i is divisible by 3 AND i is divisible by 5 THEN

        OUTPUT "Both"

    ELSE IF i is divisible by 3 THEN

        OUTPUT "By 3"

    ELSE IF i is divisible by 5 THEN

        OUTPUT "By 5"

    ELSE

        OUTPUT i
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Pseudocode does not have specific syntax requirements: it 
just has to be clear and unambiguous

Some specifics

● Assignment operator:

X := 5

X ← 5 (you can use x=5, but then use == for equality)

● Comparing for equality:

if x = y  (you can use x==y)

● FOR loops:

for each element x in sequence:

for i from 1 to n:

for i from 1 to n step 2:

for i from n down to 1:

● WHILE loop: 

same as if
16



Pseudocode does not 
have specific syntax

But keep in mind the goal:
pseudocode must be easily translatable into 
a working program (in any language).

Avoid language-
specific instructions
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Pseudocode for GCD

Algorithm GCD(a, b)

best = 1
for d   from 2 to b:  

   if (d divides a) and (d divides b):

  best = d
return best

English: 
Try every integer from 1 to b (b < a without lost of generality). 

If the integer divides both a and b, remember the best gcd so far.

Since the integers we test are increasing, 

the algorithm will remember the last – the greatest common divisor for a and b.

Pseudocode: 
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Exercise: Develop algorithm for 
searching in the array

• Formalize the problem: input, output

• Brainstorming?

• Now write the pseudocode
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Solution: Pseudocode for search in Array

n: = length of A

for i from 0 to n-1:

 if A[i] = target:

  return i

return -1

Algorithm find (array A, target)
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Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this course)

➢   Estimate running time

1. Estimate space usage
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Sample problem

Find the maximum product of two distinct numbers 
drawn from a sequence of non-negative integers.

My understanding:

Given: A sequence of non-negative  integers (each 
number is either 0 or positive).

Need to find: The maximum value that can be obtained 
by multiplying two different elements from the sequence 
(which by themselves are not necessarily distinct?).

Ask and 
clarify!
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Go over an example

Given: A sequence of non-negative  integers (each number is 
either 0 or positive).

Need to find: The maximum value that can be obtained by 
multiplying two different elements from the sequence.

Sample input:

7 5 14 2 8 8 10 1 2

Sample output: 140

Sample input:

7 5 8 8 1 3

Sample output: 64 and not 56
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Formalize the problem

Input: a sequence of n integers a0, . . . , an-1 | ai ≥ 0, 

∀i in [0 ... n-1]

Output: max (ai* aj), 0≤i≠j<n

Maximum pairwise product problem
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Brainstorm solution

Input: a sequence of n integers a1, . . . , an | ai ≥ 0, 

∀i in [0 ... n-1]

Output: max (ai* aj), 0≤i≠j<n

Maximum pairwise product problem

The first solution follows directly from the problem definition: 

we need to check all pairs of integers in a sequence and find 
which pair produces the largest product
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Solution: pseudocode

product ← 0

for i from 0 to n-1:

for j from i + 1 to n-1:

product ← max(product, A[i] · A[j])  
return product

Algorithm maxPairwiseProduct1(A[0 . . . n-1]):



Step ... Think!

Maybe there is a better solution?

Sample input:

5 6 2 7 4

Sample output: ?



Another solution

Algorithm maxPairwiseProduct2(A[0 . . . n-1]):

index ← 0

  for i from 1 to n - 1:

    if A[i] > A[index]:

     index ← i
  swap A[index] and A[n - 1]

   index ← 0

 for i from 1 to n - 2:  

    if A[i] > A[index]:

      index ← i
  swap A[index] and A[n − 2]  

  
  return A[n − 2] · A[n − 1]



Which solution is better?

• Should we implement both, run and measure how long does it 
take for n=100,000 and n = 1,000,000?

• Can we compare them without implementing?

• By analyzing and comparing our algorithms BEFORE 
implementing them, we can thus avoid implementing algorithms 
that will require too much time to run

• A little analysis could save us a lot of programming effort!
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Counting instructions

The pseudocode makes it easy to count the total number of steps as it 

relates to the input size n and the nature of the input

● It may happen that algorithm finds target already on the first 

iteration: 1 comparison and we are done

● However, it may take n comparisons in case that target is not in 

A: n operations in total

n = length of A

for i from 0 to n-1:

 if A[i] == target:

  return i

return -1

Algorithm find (array A, target)
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Number of operations vs. input size

• We can count number of steps for a variety of inputs 
and for different values of n and plot the results 

1 2 3 4 . . . . 

. .

N

problem 
size

number  of 
elementary 
steps

Different inputs 

of size 4
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Number of steps as function of n

● We want to discover function f(n) from the input size n to the 
total number of steps

● We also see that there is the best case and the worst case for 
each n

Best Case

Worst Case

Average Case

1 2 3 4 . . . . 

. .

N

problem 
size

number  of 
elementary 
steps
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Time complexity

• The best case time complexity of an algorithm is the function 
defined by the minimum number of steps taken on any instance of 
size n.

• The average-case complexity of the algorithm is the function  
defined by an average number of steps taken on any instance  of 
size n.

• The worst case complexity of an algorithm is the function defined 
by the maximum number of steps taken on any instance of size n.

• Each of these complexities defines a numerical function: 
number of operations vs. size of the input
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We are more interested in the worst case

• The nature of the input is generally not known in 
advance

• We concentrate on the worst-case: we want to know if it 
is practical to run this algorithm on large inputs of 
unknown nature

Worst Case

1 2 3 4 . . . . 

. .

N

problem 
size

number  of 
elementary 
steps
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Counting steps: RAM model

The process of counting computer operations is greatly simplified if we 

accept the RAM model of computation:

• Access to each memory element takes a constant time (1 step)

• Each “simple” operation (+, -, =, /, if, call) takes 1 step.

• Loops and function/method calls are not simple operations: they 
depend upon the size of the data and the contents of a subroutine:

○ “sort()” is not a single-step operation

○ “max(list)” is not a single-step operation

○ “ if x in list” is not a single-step operation

The RAM model is useful and accurate in the same sense as 

the flat-earth model (which is useful)!
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Loops

The running time of a loop is, at most, the running time of the 
statements inside the loop (including if tests) multiplied by the 
total number of iterations.

m = 0
for i from 0 to n-1: # repeat n times:   

    # 2 operations – 
    # increment i, test condition

    m = m + 2 #one assignment

Total steps = 1 + 2n + n = 3n +1
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Nested loops

Analyze from the inside out. 

Total number of operations is the product of the sizes of all 
the nested loops.

for i from 0 to n-1:  # outer loop - 2n times

 for j from 0 to n-1: # inner loop - 2n times

       k = k+1   # 1 time

Total time = 3 n × 2 n = 6n2
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Consecutive statements

Add the time complexity of each statement.

x = x + 1    # 1

for i from 0 to n-1:  # 2n times

 m = m+2   # 1 time

for i from 0 to n-1:  # 2n times

 for j from 0 to n-1: # 2n times

  k = k+1  # 1 time

Total time = 1 + 3n + 2n × 3n = 6n2 + 3n + 1 
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If-then-else statements

Operations: the test, plus either the then part or the 
else part: whichever is the largest.

if len(t) == 0:     # test: 1

 return false    # then part: 1

else:      # else part:

 for n from 0 to len(t)-1: # loop: 2n

 if t[n] == p[n]:  # if: 1 (no else)

       return false
 return true  

Total time = 1 + (3 n + 1)= 3n + 2
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Counting instructions: 1

product ← 0

for i from 0 to n - 2:

for j from i +1 to n - 1:

product ← max(product, A[i] · A[j])  
return product

Algorithm max_pairwise_product1(A[0 . . . n-1]):



Counting instructions: 2

index ← 0

  for i from 1 to n - 1:

    if A[i] > A[index]:

     index ← i
  swap A[index] and A[n - 1]

   index ← 0

 for i from 1 to n - 2:  

    if A[i] > A[index]:

      index ← i
  swap A[index] and A[n − 2]  

  
  return A[n − 2] · A[n − 1]

Algorithm max_pairwise_product2(A[0 . . . n-1]):
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