
Algorithms: Introduction

Lecture 6

CS0445: Algorithms and Data Structures 1

So, what is an algorithm?

A stamp showing Persian

mathematician Muhammad ibn

Musa Al-Khwarizmi whose

last name was transliterated to

Algorithmi

Different definitions of an algorithm:

● an unambiguous specification of how to solve a

class of problems. Algorithms can perform

calculation, data processing and automated

reasoning Wikipedia

● a set of rules for solving a problem in a finite

number of steps, as for finding the greatest

common divisor Random House

● a procedure for solving a mathematical problem

in a finite number of steps that frequently

involves repetition of an operation Merriam-

Webster

● a process or set of rules to be followed in

calculations or other problem-solving operations,

especially by a computer Oxford

2

Algorithms?

1. Focus upon problem-solving, not just venting

2. Build quality relationships with supportive people

3. Practice gratitude

4. Be kind to yourself, rather than overly self-critical

5. Set meaningful goals

6. Build intrinsic motivation

1. Break information into small chunks

2. Intensively concentrate on each chunk for at least 20 minutes

3. Take a break to let new material settle

4. Create a visual metaphor/story about each new concept

5. Solve problems several times until stable connection in your brain is
formed

Algorithm of happiness

Algorithm of success in STEM classes

Reference

3

https://www.goodreads.com/book/show/18693655-a-mind-for-numbers

Algorithms in living systems

(on biochemical hardware)

Code repository

Program execution

Algorithm LIFE

X←input()

If X =”tiger”
protein A=new Protein (TAAATA…)

Working copy of the code

AACCGCG
TTCGCCT

AAATATG
CATCGAT

Output protein sequence

A H W A H P P M T U V A T M

Sequence-dependent
folding

4

In this course:

● We limit ourselves to algorithms for performing computational tasks

● The algorithms should be very precise and unambiguous, so they can

be communicated to a machine

● Every computational problem is an algorithmic problem

Sample problem: compute min value in the array

public static <T extends Comparable<T>>
T min (T [] input) {

 T result = null;
 for (T entry: input) {
 if (result == null ||
 entry.compareTo(result) < 0)
 result = entry;
 }
 return result;
}

5

Why study algorithms?

● Mastery of algorithms is required for all branches of Computer

Science: Cryptography? Networks? Graphics? Bioinformatics? AI?

● Algorithms play a key role in innovations of modern life

● Challenging yourself is good for brain development

● Fun, addictive activity which can make you a better problem-solver

in general

Rubik cube solving algorithm

6

Algorithms that changed modern world

● Google search: page-rank

● Online banking: concurrent transactions

● Online payments: public-key cryptography

● Reliable communication: error-correcting codes

● GPS systems: shortest paths

7

We still need efficient algorithms

● Ancient consoles

● Mobile devices

● Browsers

• Big data • Machine learning/AI • DNA analysis

Memory and processing power constraints

Ever more ambitious tasks

8

What kind of algorithms:

Problem vs. problem instance

● Problem instances:
1. What is the position of element 11 in array

A={2,10,4,1,3,11,33}?

2. What is the median of A?

● General algorithmic problems:
1. Given an array A of integers, and the target integer t find

the position of the first occurrence of t in A

2. Given an array of integers A find its median

We are interested
in solving these

Median is the middle value
in the sorted array

9

Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this course)

5. Estimate running time

6. Estimate space requirements

10

1. Formalizing problem

● Sample problem instance: what is the Greatest Common Divisor

(GCD) of 12 and 99?

● Formalized general problem: input and output

We want it to work on large numbers:
gcd(3918848, 1653264)

Problem instance

Problem: Compute GCD

Input: 2 integers a, b. b > 1, a >1, a>b
Output: gcd(a, b).

11

2. Brainstorming

GCD: Formal Definition

For integers, a and b, their greatest common divisor or gcd(a, b) is the

largest integer d s.t. d divides both a and b (without remainder).

Put fraction a/b into simplest form.

d should divide both a and b.

Want d to be as large as possible.

Why would we want to compute it:

Need to check remainders of (a/d) (b/d)

a=45, b=15

both 45 and 15 are
divisible by 3, 5,15

we want to find 15

Go over an example

12

Solution

We need to go over integers 1, 2, …

According to the problem and the definition of gcd:

Check if each such integer d divides both a
and b without remainder

Keep the largest such number

Stop when d = min(a,b) = b

Problem: Compute GCD

Input: 2 integers a, b. b > 1, a >1, a>b

Output: gcd(a, b).

a=45, b=15

both 45 and 15 are
divisible by 3, 5,15

we want to find 15

This is algorithm in plain English

13

Three ways of expressing

 algorithmic solutions

● English

● Pseudocode

● Program

Increasing

precision

14

Pseudocode: example

FOR i from 1 TO 100 DO

 IF i is divisible by 3 AND i is divisible by 5 THEN

 OUTPUT "Both"

 ELSE IF i is divisible by 3 THEN

 OUTPUT "By 3"

 ELSE IF i is divisible by 5 THEN

 OUTPUT "By 5"

 ELSE

 OUTPUT i

15

Pseudocode does not have specific syntax requirements: it
just has to be clear and unambiguous

Some specifics

● Assignment operator:

X := 5

X ← 5 (you can use x=5, but then use == for equality)

● Comparing for equality:

if x = y (you can use x==y)

● FOR loops:

for each element x in sequence:

for i from 1 to n:

for i from 1 to n step 2:

for i from n down to 1:

● WHILE loop:

same as if
16

Pseudocode does not
have specific syntax

But keep in mind the goal:
pseudocode must be easily translatable into
a working program (in any language).

Avoid language-
specific instructions

17

Pseudocode for GCD

Algorithm GCD(a, b)

best = 1
for d from 2 to b:

 if (d divides a) and (d divides b):

 best = d
return best

English:
Try every integer from 1 to b (b < a without lost of generality).

If the integer divides both a and b, remember the best gcd so far.

Since the integers we test are increasing,

the algorithm will remember the last – the greatest common divisor for a and b.

Pseudocode:

18

Exercise: Develop algorithm for
searching in the array

• Formalize the problem: input, output

• Brainstorming?

• Now write the pseudocode

19

Solution: Pseudocode for search in Array

n: = length of A

for i from 0 to n-1:

 if A[i] = target:

 return i

return -1

Algorithm find (array A, target)

20

Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this course)

➢ Estimate running time

1. Estimate space usage

21

Sample problem

Find the maximum product of two distinct numbers
drawn from a sequence of non-negative integers.

My understanding:

Given: A sequence of non-negative integers (each
number is either 0 or positive).

Need to find: The maximum value that can be obtained
by multiplying two different elements from the sequence
(which by themselves are not necessarily distinct?).

Ask and
clarify!

22

Go over an example

Given: A sequence of non-negative integers (each number is
either 0 or positive).

Need to find: The maximum value that can be obtained by
multiplying two different elements from the sequence.

Sample input:

7 5 14 2 8 8 10 1 2

Sample output: 140

Sample input:

7 5 8 8 1 3

Sample output: 64 and not 56

23

Formalize the problem

Input: a sequence of n integers a0, . . . , an-1 | ai ≥ 0,

∀i in [0 ... n-1]

Output: max (ai* aj), 0≤i≠j<n

Maximum pairwise product problem

24

Brainstorm solution

Input: a sequence of n integers a1, . . . , an | ai ≥ 0,

∀i in [0 ... n-1]

Output: max (ai* aj), 0≤i≠j<n

Maximum pairwise product problem

The first solution follows directly from the problem definition:

we need to check all pairs of integers in a sequence and find
which pair produces the largest product

25

Solution: pseudocode

product ← 0

for i from 0 to n-1:

for j from i + 1 to n-1:

product ← max(product, A[i] · A[j])
return product

Algorithm maxPairwiseProduct1(A[0 . . . n-1]):

Step ... Think!

Maybe there is a better solution?

Sample input:

5 6 2 7 4

Sample output: ?

Another solution

Algorithm maxPairwiseProduct2(A[0 . . . n-1]):

index ← 0

 for i from 1 to n - 1:

 if A[i] > A[index]:

 index ← i
 swap A[index] and A[n - 1]

 index ← 0

 for i from 1 to n - 2:

 if A[i] > A[index]:

 index ← i
 swap A[index] and A[n − 2]

 return A[n − 2] · A[n − 1]

Which solution is better?

• Should we implement both, run and measure how long does it
take for n=100,000 and n = 1,000,000?

• Can we compare them without implementing?

• By analyzing and comparing our algorithms BEFORE
implementing them, we can thus avoid implementing algorithms
that will require too much time to run

• A little analysis could save us a lot of programming effort!

29

Counting instructions

The pseudocode makes it easy to count the total number of steps as it

relates to the input size n and the nature of the input

● It may happen that algorithm finds target already on the first

iteration: 1 comparison and we are done

● However, it may take n comparisons in case that target is not in

A: n operations in total

n = length of A

for i from 0 to n-1:

 if A[i] == target:

 return i

return -1

Algorithm find (array A, target)

30

Number of operations vs. input size

• We can count number of steps for a variety of inputs
and for different values of n and plot the results

1 2 3 4

. .

N

problem
size

number of
elementary
steps

Different inputs

of size 4

31

Number of steps as function of n

● We want to discover function f(n) from the input size n to the
total number of steps

● We also see that there is the best case and the worst case for
each n

Best Case

Worst Case

Average Case

1 2 3 4

. .

N

problem
size

number of
elementary
steps

32

Time complexity

• The best case time complexity of an algorithm is the function
defined by the minimum number of steps taken on any instance of
size n.

• The average-case complexity of the algorithm is the function
defined by an average number of steps taken on any instance of
size n.

• The worst case complexity of an algorithm is the function defined
by the maximum number of steps taken on any instance of size n.

• Each of these complexities defines a numerical function:
number of operations vs. size of the input

33

We are more interested in the worst case

• The nature of the input is generally not known in
advance

• We concentrate on the worst-case: we want to know if it
is practical to run this algorithm on large inputs of
unknown nature

Worst Case

1 2 3 4

. .

N

problem
size

number of
elementary
steps

34

Counting steps: RAM model

The process of counting computer operations is greatly simplified if we

accept the RAM model of computation:

• Access to each memory element takes a constant time (1 step)

• Each “simple” operation (+, -, =, /, if, call) takes 1 step.

• Loops and function/method calls are not simple operations: they
depend upon the size of the data and the contents of a subroutine:

○ “sort()” is not a single-step operation

○ “max(list)” is not a single-step operation

○ “ if x in list” is not a single-step operation

The RAM model is useful and accurate in the same sense as

the flat-earth model (which is useful)!

35

Loops

The running time of a loop is, at most, the running time of the
statements inside the loop (including if tests) multiplied by the
total number of iterations.

m = 0
for i from 0 to n-1: # repeat n times:

 # 2 operations –
 # increment i, test condition

 m = m + 2 #one assignment

Total steps = 1 + 2n + n = 3n +1

36

Nested loops

Analyze from the inside out.

Total number of operations is the product of the sizes of all
the nested loops.

for i from 0 to n-1: # outer loop - 2n times

 for j from 0 to n-1: # inner loop - 2n times

 k = k+1 # 1 time

Total time = 3 n × 2 n = 6n2

37

Consecutive statements

Add the time complexity of each statement.

x = x + 1 # 1

for i from 0 to n-1: # 2n times

 m = m+2 # 1 time

for i from 0 to n-1: # 2n times

 for j from 0 to n-1: # 2n times

 k = k+1 # 1 time

Total time = 1 + 3n + 2n × 3n = 6n2 + 3n + 1

38

If-then-else statements

Operations: the test, plus either the then part or the
else part: whichever is the largest.

if len(t) == 0: # test: 1

 return false # then part: 1

else: # else part:

 for n from 0 to len(t)-1: # loop: 2n

 if t[n] == p[n]: # if: 1 (no else)

 return false
 return true

Total time = 1 + (3 n + 1)= 3n + 2

39

Counting instructions: 1

product ← 0

for i from 0 to n - 2:

for j from i +1 to n - 1:

product ← max(product, A[i] · A[j])
return product

Algorithm max_pairwise_product1(A[0 . . . n-1]):

Counting instructions: 2

index ← 0

 for i from 1 to n - 1:

 if A[i] > A[index]:

 index ← i
 swap A[index] and A[n - 1]

 index ← 0

 for i from 1 to n - 2:

 if A[i] > A[index]:

 index ← i
 swap A[index] and A[n − 2]

 return A[n − 2] · A[n − 1]

Algorithm max_pairwise_product2(A[0 . . . n-1]):

	Slide 1: Algorithms: Introduction
	Slide 2: So, what is an algorithm?
	Slide 3: Algorithms?
	Slide 4: Algorithms in living systems (on biochemical hardware)
	Slide 5: In this course:
	Slide 6: Why study algorithms?
	Slide 7: Algorithms that changed modern world
	Slide 8: We still need efficient algorithms
	Slide 9: What kind of algorithms: Problem vs. problem instance
	Slide 10: Developing Algorithms: steps
	Slide 11: 1. Formalizing problem
	Slide 12: 2. Brainstorming
	Slide 13: Solution
	Slide 14: Three ways of expressing algorithmic solutions
	Slide 15: Pseudocode: example
	Slide 16: Pseudocode does not have specific syntax requirements: it just has to be clear and unambiguous
	Slide 17: Pseudocode does not have specific syntax
	Slide 18: Pseudocode for GCD
	Slide 19: Exercise: Develop algorithm for searching in the array
	Slide 20: Solution: Pseudocode for search in Array
	Slide 21: Developing Algorithms: steps
	Slide 22: Sample problem
	Slide 23: Go over an example
	Slide 24: Formalize the problem
	Slide 25: Brainstorm solution
	Slide 26: Solution: pseudocode
	Slide 27: Step ... Think!
	Slide 28: Another solution
	Slide 29: Which solution is better?
	Slide 30: Counting instructions
	Slide 31: Number of operations vs. input size
	Slide 32: Number of steps as function of n
	Slide 33: Time complexity
	Slide 34: We are more interested in the worst case
	Slide 35: Counting steps: RAM model
	Slide 36: Loops
	Slide 37: Nested loops
	Slide 38: Consecutive statements
	Slide 39: If-then-else statements
	Slide 40: Counting instructions: 1
	Slide 41: Counting instructions: 2

