CS0445: Algorithms and Data Structures 1

Lecture 6

Algorithms: Introduction

So, what Is an algorithm?

Different definitions of an algorithm:

 an unambiguous specification of how to solve a
class of problems. Algorithms can perform
calculation, data processing and automated
reasoning Wikipedia

o asetof rules for solving a problem in a finite
number of steps, as for finding the greatest
common divisor Random House

o aprocedure for solving a mathematical problem

in a finite number of steps that frequently fib-KOPESMU
involves repetition of an operation Merriam- A stamp showing Persian
mathematician Muhammad ibn
Webster Musa Al-Khwarizmi whose
o aprocess or set of rules to be followed in ':ft name was transliterated to
gorithmi

calculations or other problem-solving operations,
especially by a computer Oxford

Algorithms?

Algorithm of happiness

LN

Focus upon problem-solving, not just venting
Build quality relationships with supportive people
Practice gratitude

Be kind to yourself, rather than overly self-critical
Set meaningful goals

Build intrinsic motivation

Algorithm of success in STEM classes

N D

'fo

Break information into small chunks

Intensively concentrate on each chunk for at least 20 minutes
Take a break to let new material settle

Create a visual metaphor/story about each new concept

Solve problems several times until stable connection in your brain is
rmed Reference

https://www.goodreads.com/book/show/18693655-a-mind-for-numbers

Algorithms In living systems
(on biochemical hardware)

Algorithm LIFE

AACCGCG
TTCGCCT ;
(_
TATG X<—input()
CATCGAT If X =”tig€1‘”

protein A=new Protein (TAAATA...) 7

Code repository

Program execution

Working copy of the code Sequence-dependent

folding

Output protein sequence
AAHWAHPPMTUVATM

In this course:

e We limit ourselves to algorithms for performing computational tasks

e The algorithms should be very precise and unambiguous, so they can
be communicated to a machine

e Every computational problem is an algorithmic problem

Sample problem: compute min value in the array

public static <T extends Comparable<T>>
T min (T [] input) {
T result = null;
for (T entry: input) {
if (result == null ||
entry.compareTo(result) < 0)
result = entry;

¥

return result;

Why study algorithms?

e Mastery of algorithms is required for all branches of Computer
Science: Cryptography? Networks? Graphics? Bioinformatics? AI?

e Algorithms play a key role in innovations of modern life

e Challenging yourself is good for brain development

e Fun, addictive activity which can make you a better problem-solver
in general

v

Turn the Up Layer

— | to take a wrong
rrrrrr to FRU

Rubik cube solving algorithm

Algorithms that changed modern world

Google search: page-rank

Online banking: concurrent transactions

Online payments: public-key cryptography
Reliable communication: error-correcting codes
GPS systems: shortest paths

People who

expressed that

~__ |opinion also

~ [purchased the
Zfollowing items ...

We still need efficient algorithms

Memory and processing power constraints

® Ancient consoles
® Mobile devices
® Browsers

Ever more ambitious tasks

* Big data * Machine learning/Al * DNA analysis

'\ - A~ B
M AN ARSI

Digital Health: How Genomic Big Data is Transforming Health Care

What kind of algorithms:
Problem vs. problem instance

o Problem instances:
1. What is the position of element 11 in array
A={2,10,4,1,3,11,33}?

2. Whatis the median of A? Median is the middle value

in the sorted array

We are interested
in solving these

U
o General algorithmic problems:

1. Given an array A of integers, and the target integer £find
the position of the first occurrence of £in 4
2. Given an array of integers A4 find its median

Developing Algorithms: steps

Formalize the problem: input and output
Brainstorm solution

Express solution: pseudocode

Prove correctness (outside the scope of this course)
Estimate running time

Estimate space requirements

o kAN

1. Formalizing problem

e Sample problem instance: what is the Greatest Common Divisor

(GCD) of 12 and 99?
e Formalized general problem: input and output

Problem: Compute GCD

Input: 2 integersa, b.b>1,a>1, a>b
Output: gcd(a, b).

We want it to work on large numbers:
gcd(3918848, 1653264)

\ Problem instance

11

12

2. Brainstorming

GCD: Formal Definition

For integers, a and b, their greatest common divisor or gcd(a, b) is the
largest integer d s.t. d divides both a and b (without remainder).

Why would we want to compute it:

Put fraction a/b into simplest form. a=45, b=15

both 45 and 15 are

Need to check remainders of (a/d) (b/d) divisible by 3, 5,15
d should divide both g and b. we want to find 15
Want d'to be as large as possible. *\

Go over an example

Solution Problem: Compute GCD

Input: 2 integersa, b. b >1,a>1, a>b

Output: gcd(a, b).

According to the problem and the definition of gcd:

We need to go over integers 1, 2, ...

Check if each such integer d divides both a a=45, b=15
and b without remainder both 45 and 15 are
Keep the largest such number divisible by 3, 5,15

Stop when d = min(a,b) = b we want to find 15

This is algorithm in plain English

13

Three ways of expressing
algorithmic solutions

e English
o Pseudocode
e Program

Increasing
precision

14

Pseudocode: example

FOR i from 1 TO 100 DO

IF i is divisible by 3 AND i is divisible by 5 THEN
OUTPUT "Both"

ELSE IF i is divisible by 3 THEN
OUTPUT "By 3"

ELSE IF i is divisible by 5 THEN
OUTPUT "By 5"

ELSE
OUTPUT i

15

Pseudocode does not have specific syntax requirements: it
just has to be clear and unambiguous

Some specifics
e Assignment operator:
X:=5
X < 5 (you can use x=5, but then use == for equality)
o Comparing for equality:
if x=y (you can use x==y)
e FORloops:
for each element x in sequence:
forifrom 1to n:
forifrom 1 to n step 2:
for i from n downto 1:
e WHILE loop:
same as if

Pseudocode does not
have specific syntax

But keep in mind the goal:
pseudocode must be easily translatable into
a working program (in any language).

{

Avoid language-
specific instructions

Pseudocode for GCD

English:
Try every integer from 1 to b (b < a without lost of generality).
If the integer divides both a and b, remember the best gcd so far.

Since the integers we test are increasing,
the algorithm will remember the last — the greatest common divisor for a and b.

Pseudocode:
Algorithm GCD(a, b)

best =1
for d from 2to b:
if (ddividesa)and (ddivides b):
best = d
return best

Exercise: Develop algorithm for
searching in the array

» Formalize the problem: input, output
* Brainstorming?
« Now write the pseudocode

Solution: Pseudocode for search in Array

Algorithm find (array A, target)
n: = length of A
for 1 from 0 to n-1:

if A[i1] = target:

return 1
return -1

Developing Algorithms: steps

1. Formalize the problem: input and output

2. Brainstorm solution

3. Express solution: pseudocode

4. Prove correctness (outside the scope of this course)
» Estimate running time

1. Estimate space usage

Sample problem

Find the maximum product of two distinct numbers
drawn from a sequence of non-negative integers.

My understanding:

Given: A sequence of non-negative integers (each
number is either 0 or positive).

Need to find: The maximum value that can be obtained
by multiplying two different elements from the sequence
(which by themselves are not necessarily distinct?).

Ask and
clarify!

Go over an example

Given: A sequence of non-negative integers (each number is
either O or positive).

Need to find: The maximum value that can be obtained by
multiplying two different elements from the sequence.

Sample input:

7 5 14 2 8 8 10 1 2

Sample output: 140

Sample input:

7/ 5 8 8 1 3

Sample output: 64 and not 56

Formalize the problem

Maximum pairwise product problem

Input: a sequence of n integersay, ..., a,; | 4,20,
Viin [O ... n-1]

Output: max (2" a), O<i#j<n

Brainstorm solution

Maximum pairwise product problem

Input: a sequence of n integers a,, ..., a
Viin [O ... n-1]

n|a120>

Output: max (2" a), O<i#j<n

The first solution follows directly from the problem definition:

we need to check all pairs of integers in a sequence and find
which pair produces the largest product

Solution: pseudocode

Algorithm maxPairwiseProduct1(A[O ... n-1]):

product — O
for i from O to n-1:
for jfrom i + 1 to n-1:
product «— max(product, A[i] = A[j])
return product

Step ... Think!

Sample input:

5 6 2 7 4

Sample output: ?

Maybe there is a better solution?

Another solution

Algorithm maxPairwiseProduct2(A[0 . .. n-1]):

index — O
for i from 1 to n-1:
if A[i] > Alindex]:
index «— i
swap Alindex] and A[n - 1]

index — O
forifrom 1 ton- 2:
if A[i] > Alindex]:
index «— i
swap Alindex] and A[n = 2]

return Ajn = 2| = A[n = 1]

Which solution is better?

Should we implement both, run and measure how long does it
take for n=100,000 and n = 1,000,0007?

Can we compare them without implementing?

By analyzing and comparing our algorithms BEFORE
implementing them, we can thus avoid implementing algorithms
that will require too much time to run

A little analysis could save us a lot of programming effort!

Counting Instructions

The pseudocode makes it easy to count the total number of steps as it
relates to the input size n and the nature of the input

Algorithm find (array A, target)
n = length of A
for 1 from 0 to n-1:
if A[1] == target:
return 1
return -1

e It may happen that algorithm finds target already on the first
iteration: 1 comparison and we are done

e However, it may take 7 comparisons in case that target is not in
A: noperations in total

30

Number of operations vs. input size

* We can count number of steps for a variety of inputs
and for different values of n and plot the results

number of
elementary
steps

: Different inputs
. of size 4

problem
Size

Number of steps as function of n

e We want to discover function f(n) from the input size nto the
total number of steps

e We also see that there is the best case and the worst case for
each n

number of Worst Case
elementary

steps
Average Case

Best Case

problem
Size

Time complexity

« The best case time complexity of an algorithm is the function
defined by the minimum number of steps taken on any instance of
size n.

* The complexity of the algorithm is the function
defined by an taken on any instance of
size n.

« The worst case complexity of an algorithm is the function defined
by the maximum number of steps taken on any instance of size n.

« Each of these complexities defines a numerical function:
number of operations vs. size of the input

We are more interested in the worst case

« The nature of the input is generally not known in

advance

« We concentrate on the worst-case: we want to know if it
is practical to run this algorithm on large inputs of

unknown nature

number of
elementary
steps

Worst Case

problem
Size

Counting steps: RAM model

The process of counting computer operations is greatly simplified if we
accept the RAM model of computation:

- Access to each memory element takes a constant time (1 step)
- Each “simple” operation (+, -, =, /, if, call) takes 1 step.

- Loops and function/method calls are not simple operations: they
depend upon the size of the data and the contents of a subroutine:

o “sort()” is not a single-step operation
o “max(list)” is not a single-step operation
o “if xin list” is not a single-step operation

The RAM model is useful and accurate in the same sense as
the flat-earth model (which is useful)!

35

Loops

The running time of a loop is, at most, the running time of the
statements inside the loop (including if tests) multiplied by the
total number of iterations.

m= 0
for 1 from O to n-1: # repeat n times:

2 operations -
increment i, test condition

m=m+ 2 #one assignment

Total steps =1+ 2n+ n=3n +1

Nested loops

Analyze from the inside out.

Total number of operations is the product of the sizes of all
the nested loops.

for 1 from © to n-1: # outer loop - 2n times
for j from © to n-1: # inner loop - 2n times
k = k+1 # 1 time

Total time=3 nx 2 n =6n2

Consecutive statements

Add the time complexity of each statement.

X =X+ 1 # 1
for 1 from O to n-1: # 2n times
m = m+2 # 1 time
for 1 from O to n-1: # 2n times
for j from @ to n-1: # 2n times
k = k+1 # 1 time

Totaltime=1+3n+2nx3n=6n2+3n+1

If-then-else statements

Operations: the test, plus either the then part or the
else part: whichever is the largest.

if len(t) == 0: # test: 1
return false # then part: 1
else: # else part:
for n from @ to len(t)-1: # loop: 2n
if t[n] == p[n]: # if: 1 (no else)

return false
return true

Total time=1+(3n+1)=3n+2

Counting instructions: 1

Algorithm max pairwise_productl(A[O... n-1]):

product — O
for i from O to n - 2:
for jfromi+1 ton-1:
product — max(product, A[i] = A[j])
return product

Counting instructions: 2

Algorithm max pairwise_product2(A[O... n-1]):

index — O
for i from 1 to n-1:
if A[i] > Alindex]:
index « i
swap Alindex] and Aln - 1]

index — O
forifrom 1 ton- 2:
if A[i] > Alindex]:
index «— i
swap Alindex] and A[n = 2]

return Ajn = 2] = A[n = 1]

	Slide 1: Algorithms: Introduction
	Slide 2: So, what is an algorithm?
	Slide 3: Algorithms?
	Slide 4: Algorithms in living systems (on biochemical hardware)
	Slide 5: In this course:
	Slide 6: Why study algorithms?
	Slide 7: Algorithms that changed modern world
	Slide 8: We still need efficient algorithms
	Slide 9: What kind of algorithms: Problem vs. problem instance
	Slide 10: Developing Algorithms: steps
	Slide 11: 1. Formalizing problem
	Slide 12: 2. Brainstorming
	Slide 13: Solution
	Slide 14: Three ways of expressing algorithmic solutions
	Slide 15: Pseudocode: example
	Slide 16: Pseudocode does not have specific syntax requirements: it just has to be clear and unambiguous
	Slide 17: Pseudocode does not have specific syntax
	Slide 18: Pseudocode for GCD
	Slide 19: Exercise: Develop algorithm for searching in the array
	Slide 20: Solution: Pseudocode for search in Array
	Slide 21: Developing Algorithms: steps
	Slide 22: Sample problem
	Slide 23: Go over an example
	Slide 24: Formalize the problem
	Slide 25: Brainstorm solution
	Slide 26: Solution: pseudocode
	Slide 27: Step ... Think!
	Slide 28: Another solution
	Slide 29: Which solution is better?
	Slide 30: Counting instructions
	Slide 31: Number of operations vs. input size
	Slide 32: Number of steps as function of n
	Slide 33: Time complexity
	Slide 34: We are more interested in the worst case
	Slide 35: Counting steps: RAM model
	Slide 36: Loops
	Slide 37: Nested loops
	Slide 38: Consecutive statements
	Slide 39: If-then-else statements
	Slide 40: Counting instructions: 1
	Slide 41: Counting instructions: 2

