CS0445: Algorithms and Data Structures 1

Lecture 5

Abstract Data Types

Abstract Data Types (ADT)

« We are familiar with data types in Java
« For example some primitive data types: int, float, double,
boolean, or object types such as String, StringBuilder, JButton
and File
« We know how to define a new data type

« Each data type encapsulates inside:
« Some data and its representation in memory
* For classes these are the instance variables
» The operations by which the data can be manipulated

 For classes these are the methods

Abstraction in Computer Science

= Abstraction - the process of extracting only essential
property from a real-life entity
> In CS: Problem — storage + operations

Abstract Data Type (ADT):

result of the process of abstraction

. A specification of data to be stored together
with a set of operations on that data

. ADT = Data + Operations

ADT Is a mathematical concept
(from theory of concepts)

ADT is a language-agnostic concept
o Different languages support ADT in different ways

o InJava, use class (abstract class, interface) construct to
declare a new ADT

ADT includes:
2 Specification:
What needs to be stored
What operations should be supported
2 Implementation:

Data structures and algorithms used to meet the
specification

ADT: Specification vs. implementation

Specification and implementation have to be disjoint:
] One specification
] One or more implementations

Using different data structures
Using different algorithms

Specification is expressed by defining the public variables and
methods

Implementation implements these declared methods

ADT is a specification of a data type (data + operations) which
is separated from its implementation

It is just an idea of “what we want”

Example: ADT Big Integer

« Specification:
 Data to be stored: arbitrarily sized whole numbers
» Supported operations: +, -, *, /, %

- Sample implementation:
 BigInteger type in Java

Using ADT vs. implementing it

 In order to use BiglIntegers in our programs, we ONLY need to
know what they are and what their operations do

* We do NOT need to know their implementation details
« How the Biglnteger is represented in memory?
« What algorithm is used for the division operation?

 For the purposes of using BigInteger in your program, the
implementation details do not matter

» These are abstracted out of our view!

« In this course you will look at ADTs both from the user's and
implementer’s point of view

ADT specification in Java: interface

« We can use Interfaces to specify the idea of the desired type:
« Interface is the most abstract concept in Java
» Specifies a set of methods — a set of behaviors or abilities

« Does not specify how those methods should actually be
implemented

« Does not specify how the data needs to be structures in
memory

 The textbook will typically use interfaces as ADT specifications and
classes as ADT implementations

ADT specification in Java: class

« However any class with its public methods can be used as an
ADT:

« The body of the method can be implemented differently
without affecting the users of the class

« The data storage can be replaced with more efficient data
structures

« All this without affecting the users of a class — as long as the
public interface (method signatures) does not change

The art of Abstraction

« We model a real-life problem using a concept of ADT:
 Take a problem
» Think what is important to solve this particular problem

 Abstract the multitude of properties of a real-life entity into a
minimal set of data + supported operations

This is NOT the kind of
abstraction we are talking
about

Enso — abstract symbol for absolute
enlightenment: strength, elegance,
the universe, and mu (the void)

Example: Doctor queue

We want to model a list of patients waiting in the Hospital ER

> When a new patient arrives - we should be able to add him to
the queue

> When the doctor calls for the next patient, we should be able
to remove the patient from the front of the queue

" A A O AnA

PrAsHss

11

Abstraction of Patient List: Queue

If these are the only two required operations, then we can
model the Doctor queue using a Queue ADT

The elements in the Queue are sorted by timestamp: from the
earlier to the later

This ADT is called a F/FO Queue (First In First Out)

1 2 3
Front = Rear

Specification

Queue: Abstract Data Type which supports the following
operations:

—
—

-
-

Enqueue(e). adds element e to collection
Dequeue(). removes and returns least recently-added
key

Boolean IsEmpty(). are there any elements?
Boolean IsFull(). is there any space left?

13

Implementation

« We need a data structure to store the elements of the queue
« The only data structure we used so far is an array

* So let’s try to maintain the queue as an array and implement
the required operations

Definition

Array is a contiguous area of memory containing
equal-sized elements indexed by contiguous integers

arrayAddr 04
=200

int A

4 bytes

01 2 3 4 5 6

Array elements must stay contiguous

/200 A[3]
int A [] Fbytes

4 bytes

01 2 3 4 5 6

« Because of contiguous arrangement we can directly access
any element of the array by index i

« The address of A[i] is computed as:
arrayAddr + elemSize x (/)
and we can jump directly to this address

« For example, address of A[3] = 200+3*4 = 212
« Array elements must stay contiguous (no gaps)

Edit operations: add/remove

« We can use space allocated for the array to store a variable
number of elements

« We just need to distinguish between the array capacity (the
number of allocated slots) and the actual number of elements in

the array (we will call it size)

« This is especially useful if we have array of references — we can
keep track of the number of actual objects in the array

size=é'L We can store the actual
capaclity=7 number of the elements added

to the array in a variable size

Add to the end of A

1. As long as capacity permits, add new element to the empty slot
at position size

2. Increment size by 1

add(4)

Al5 (8 (3 12 — 5|8 |3 |12/4

size=4 A[size]=4
capacity=7 size=5

capacity=7

Add In the middle of A

« We must keep elements consecutive: array is a contiguous
sequence in memory

« If we want to insert an element at some position j of A, we must
move all the elements from jto size-1 to the right

We check that jis a 51(8 |3 12/4

valid position: A <ize=5

j<=size S :
O capacity=7
O
(e

58/ |3/1124] |— |5 8/9/3/124

Shifting to the right A[j]=9
for (int i=size; i>j; i--) size=6
capacity=7

A[i] = A[i-1]

Remove from the end

« Simply decrement size

5891312 4 remove(size -1)

size=6 \ 5 8 9

capacity=7 ,
Slze=5

capacity=7

Remove in the middle (beginning)

 To remove element at position j, shift all elements from j/+1 to
size-1 to the left and decrement size

8193|124

size=6
check that jis a capacity=7
valid position: remove(j=0)
J<Ssize
819|312 4 size=s
capacity=7

Shifting to the left
for (int i=j+1; i<size; i++)
A[i-1] = A[i]

Queue AD

read

Implementation with Array

We have two pointers:
0 read and write

read — index in A where
the front element of the
queue is located

write

write — index in A where
the rear of the queue is
located

Initially, read=write=0

22

Queue Implementation with Array

read Write

Enqgueue(a)

23

Queue Implementation with Array

read Wwrite

Queue Implementation with Array

read Write

Enqueue(b)

Queue Implementation with Array

read Write

26

Queue Implementation with Array

read Write

Dequeue()

Queue Implementation with Array

read Write

Dequeue() - a

28

Queue Implementation with Array

read Write

Enqueue(c)

29

Queue Implementation with Array

read Write

30

Queue Implementation with Array

read write

Enqueue(d)

Queue Implementation with Array

read write

32

Queue Implementation with Array

read Write

Dequeue()

33

Queue Implementation with Array

read Write

Dequeue() -» b

Queue Implementation with Array

read Write

Engueue(e)

Concept of a Circular Array

read Write

Engueue(e)

Concept of a Circular Array

read Write

Enqueue(e)

Queue Implementation with a circular Array

read Wwrite

38

Queue Implementation with a circular Array

read Write

Enqueue(f)

39

Queue Implementation with a circular Array

read Write

40

Queue Implementation with a circular Array

read Write

Enqueue(g)

Queue Implementation with a circular Array

read Write

Enqueue(g) - ERROR
Cannot set read = write
i1sFull() » True

Queue Implementation with a circular Array

read write

Dequeue()

Queue Implementation with a circular Array

read Write

Dequeue() - c

Queue Implementation with a circular Array

read Write

Dequeue()

Queue Implementation with a circular Array

read Write

Dequeue() - d

Queue Implementation with a circular Array

read write

Dequeue()

Queue Implementation with a circular Array

read Write

Dequeue() - e

Queue Implementation with a circular Array

read Wwrite

Dequeue()

Queue Implementation with a circular Array

read Write

Dequeue() -» f

Queue Implementation with a circular Array

read Write

IsEmpty() - True

Queue Implementation using Array

\

\

\

Queue ADT can be implemented with a circu/ar Array
We need 2 pointers (indexes of the array): read and write

When we engueue(e) we add e at position write, and increment
write. If write was at the last position, it wraps around to position 0

After enqgueue(e) read and write cannot be equal - because
next time you write you would erase the first element of the queue
pointed to by read

When we degueue() we remove the element at position read, and
increment read

If read=write then the queue is empty

52

We hide implementation details from
users of ADT

Users of ADT:
J Aware of the specification only
Usage only based on the specified operations
1 Do not care / need not know about the actual implementation
i.e. Different implementations do not affect the users of ADT

A Wall of ADT

ADT operations provide:
2 Interface to data structures

2 Secure access

Program

Request to perform operation

>

Interface

l

remove

Result of operation

Ex. The users of our
Queue implementation do
not know that there is an
array, or what is a
capacity of this array: only
if it is full or empty.

Data
structure

54

Wall of ADT operations

Violating the abstraction

User programs should not:
Use the underlying data structure directly
Depend on implementation details

a

a

Program

remove

Wall of ADT operations

Data
structure

55

Advantages of ADT

Hide the implementation details by building walls around the data
and operations

J So that changes in either will not affect other
program components that use them

Functionalities are less likely to change
Localize rather than globalize changes
This helpx manage software complexity

Different Queue Implementations

* Queue ADT can be implemented using a regular Array, where
the front is always at position 0, and rear at position size

 This queue implementation requires shifting all the data to the
left when we dequeue

* Queue ADT can be implemented using a circular Array — as
demonstrated above

« Later in the course we will learn how to implement Queue ADT
using Linked List

Comparing Different Queue
Implementations

« Which implementation is the best?

« It seems that we need some tools to analyze and compare the
performance of different implementations

« This is the part of the course where we enter the Algorithms and
study the tools for analyzing them

	Slide 1: Abstract Data Types
	Slide 2: Abstract Data Types (ADT)
	Slide 3: Abstraction in Computer Science
	Slide 4: ADT is a mathematical concept (from theory of concepts)
	Slide 5: ADT: Specification vs. implementation
	Slide 6: Example: ADT Big Integer
	Slide 7: Using ADT vs. implementing it
	Slide 8: ADT specification in Java: interface
	Slide 9: ADT specification in Java: class
	Slide 10: The art of Abstraction
	Slide 11: Example: Doctor queue
	Slide 12: Abstraction of Patient List: Queue
	Slide 13: Specification
	Slide 14: Implementation
	Slide 15: Definition
	Slide 16: Array elements must stay contiguous
	Slide 17: Edit operations: add/remove
	Slide 18: Add to the end of A
	Slide 19: Add in the middle of A
	Slide 20: Remove from the end
	Slide 21: Remove in the middle (beginning)
	Slide 22: Queue ADT Implementation with Array
	Slide 23: Queue Implementation with Array
	Slide 24: Queue Implementation with Array
	Slide 25: Queue Implementation with Array
	Slide 26: Queue Implementation with Array
	Slide 27: Queue Implementation with Array
	Slide 28: Queue Implementation with Array
	Slide 29: Queue Implementation with Array
	Slide 30: Queue Implementation with Array
	Slide 31: Queue Implementation with Array
	Slide 32: Queue Implementation with Array
	Slide 33: Queue Implementation with Array
	Slide 34: Queue Implementation with Array
	Slide 35: Queue Implementation with Array
	Slide 36: Concept of a Circular Array
	Slide 37: Concept of a Circular Array
	Slide 38: Queue Implementation with a circular Array
	Slide 39: Queue Implementation with a circular Array
	Slide 40: Queue Implementation with a circular Array
	Slide 41: Queue Implementation with a circular Array
	Slide 42: Queue Implementation with a circular Array
	Slide 43: Queue Implementation with a circular Array
	Slide 44: Queue Implementation with a circular Array
	Slide 45: Queue Implementation with a circular Array
	Slide 46: Queue Implementation with a circular Array
	Slide 47: Queue Implementation with a circular Array
	Slide 48: Queue Implementation with a circular Array
	Slide 49: Queue Implementation with a circular Array
	Slide 50: Queue Implementation with a circular Array
	Slide 51: Queue Implementation with a circular Array
	Slide 52: Queue Implementation using Array
	Slide 53: We hide implementation details from users of ADT
	Slide 54: A Wall of ADT
	Slide 55: Violating the abstraction
	Slide 56: Advantages of ADT
	Slide 57: Different Queue Implementations
	Slide 58: Comparing Different Queue Implementations

