CS0445: Algorithms and Data Structures 1

Lecture 5 Abstract Data Types

Abstract Data Types (ADT)

- We are familiar with data types in Java
 - For example some primitive data types: int, float, double, boolean, or object types such as String, StringBuilder, JButton and File
 - We know how to define a new data type
- Each data type encapsulates inside:
 - Some data and its representation in memory
 - For classes these are the instance variables
 - The operations by which the data can be manipulated
 - For classes these are the methods

Abstraction in Computer Science

- Abstraction the process of extracting only essential property from a real-life entity
- ➤ In CS: Problem → storage + operations

Abstract Data Type (ADT):

result of the process of abstraction

- A specification of data to be stored together with a set of operations on that data
- ADT = Data + Operations

ADT is a mathematical concept (from *theory of concepts*)

ADT is a **language-agnostic** concept

- Different languages support ADT in different ways
- In Java, use class (abstract class, interface) construct to declare a new ADT

ADT includes:

Specification:

- What needs to be stored
- What operations should be supported

Implementation:

 Data structures and algorithms used to meet the specification

ADT: Specification vs. implementation

Specification and **implementation** have to be disjoint:

- One specification
- ☐ One or more implementations
 - Using different data structures
 - Using different algorithms

Specification is expressed by defining the public variables and methods

Implementation implements these declared methods

- ADT is a specification of a data type (data + operations) which is separated from its implementation
- It is just an idea of "what we want"

Example: ADT Big Integer

Specification:

- Data to be stored: arbitrarily sized whole numbers
- Supported operations: +, -, *, /, %

Sample implementation:

• **BigInteger** type in Java

Using ADT vs. implementing it

- In order to use BigIntegers in our programs, we ONLY need to know what they are and what their operations do
 - We do NOT need to know their implementation details
 - How the BigInteger is represented in memory?
 - What algorithm is used for the division operation?
- For the purposes of using BigInteger in your program, the implementation details do not matter
- These are abstracted out of our view!
- In this course you will look at ADTs both from the user's and implementer's point of view

ADT specification in Java: interface

- We can use Interfaces to specify the idea of the desired type:
 - Interface is the most abstract concept in Java
 - Specifies a set of methods a set of behaviors or abilities
 - Does not specify how those methods should actually be implemented
 - Does not specify how the data needs to be structures in memory
- The textbook will typically use interfaces as ADT specifications and classes as ADT implementations

ADT specification in Java: class

- However any class with its public methods can be used as an ADT:
 - The body of the method can be implemented differently without affecting the users of the class
 - The data storage can be replaced with more efficient data structures
 - All this without affecting the users of a class as long as the public interface (method signatures) does not change

The art of Abstraction

- We model a real-life problem using a concept of ADT:
 - Take a problem
 - Think what is important to solve this particular problem
 - Abstract the multitude of properties of a real-life entity into a minimal set of data + supported operations

Enso – abstract symbol for absolute enlightenment: strength, elegance, the universe, and mu (the void)

This is NOT the kind of abstraction we are talking about

Example: Doctor queue

We want to model a list of patients waiting in the Hospital ER

- When a new patient arrives we should be able to add him to the queue
- When the doctor calls for the next patient, we should be able to remove the patient from the front of the queue

Abstraction of Patient List: Queue

- If these are the only two required operations, then we can model the Doctor queue using a *Queue* ADT
- The elements in the Queue are sorted by timestamp: from the earlier to the later
- This ADT is called a FIFO Queue (First In First Out)

Specification

Queue: Abstract Data Type which supports the following operations:

- → *Enqueue(e)*: adds element *e* to collection
- → Dequeue(): removes and returns least recently-added key
- → Boolean *IsEmpty()*: are there any elements?
- → Boolean *IsFull()*: is there any space left?

Implementation

- We need a data structure to store the elements of the queue
- The only data structure we used so far is an array
- So let's try to maintain the queue as an array and implement the required operations

Definition

Array is a **contiguous** area of memory containing **equal-sized** elements indexed by contiguous integers

Array elements must stay contiguous

- Because of contiguous arrangement we can directly access any element of the array by index i.
- The address of A[i] is computed as:
 arrayAddr + elemSize × (i)
 and we can jump directly to this address
- For example, address of A[3] = 200+3*4 = 212
- Array elements must stay contiguous (no gaps)

Edit operations: add/remove

- We can use space allocated for the array to store a variable number of elements
- We just need to distinguish between the array capacity (the number of allocated slots) and the actual number of elements in the array (we will call it size)
- This is especially useful if we have array of references we can keep track of the number of actual objects in the array

size=4
capacity=7

We can store the actual number of the elements added to the array in a variable size

Add to the end of A

- As long as capacity permits, add new element to the empty slot at position *size*
- 2. Increment size by 1

Add in the middle of A

- We must keep elements consecutive: array is a contiguous sequence in memory
- If we want to insert an element at some position j of A, we must move all the elements from j to size-1 to the right

Remove from the end

• Simply decrement size

<mark>size=6</mark> capacity=7 remove(size -1)

<mark>size=5</mark> capacity=7

Remove in the middle (beginning)

 To remove element at position j, shift all elements from j+1 to size-1 to the left and decrement size

capacity=7

Shifting to the left

We have two pointers: read and write

read – index in A where the front element of the queue is located

write – index in A where the rear of the queue is located

Initially, read=write=0

Enqueue(a)

Enqueue(b)

Dequeue()

Enqueue(c)

Enqueue(d)

Dequeue()

$$Dequeue() \rightarrow b$$

Enqueue(e)

Concept of a Circular Array

Enqueue(e)

Concept of a Circular Array

Enqueue(e)

Enqueue(f)

Enqueue(g)

Enqueue(g) \rightarrow ERROR Cannot set read = write isFull() \rightarrow True

Dequeue()

Dequeue()

Dequeue()

Dequeue()

$$Dequeue() \rightarrow f$$

Queue Implementation using Array

- → Queue ADT can be implemented with a circular Array
- → We need 2 pointers (indexes of the array): *read* and *write*
- → When we enqueue(e) we add e at position write, and increment write. If write was at the last position, it wraps around to position 0
- → After enqueue(e) read and write cannot be equal because next time you write you would erase the first element of the queue pointed to by read
- → When we *dequeue()* we remove the element at position *read*, and increment *read*
- → If *read=write* then the queue is empty

We hide implementation details from users of ADT

Users of ADT:

- Aware of the specification only
 - Usage only based on the specified operations
- Do not care / need not know about the actual implementation
 - i.e. Different implementations do **not** affect the users of ADT

A Wall of ADT

- ADT operations provide:
 - Interface to data structures

Secure access

Ex. The users of our Queue implementation do not know that there is an array, or what is a capacity of this array: only if it is full or empty.

Violating the abstraction

- User programs should not:
 - Use the underlying data structure directly
 - Depend on implementation details

Advantages of ADT

- Hide the implementation details by building walls around the data and operations
 - So that changes in either will not affect other program components that use them
- Functionalities are less likely to change
- Localize rather than globalize changes
- This helpx manage software complexity

Different Queue Implementations

- Queue ADT can be implemented using a regular Array, where the front is always at position 0, and rear at position size
 - This queue implementation requires shifting all the data to the left when we dequeue
- Queue ADT can be implemented using a circular Array as demonstrated above
- Later in the course we will learn how to implement Queue ADT using Linked List

Comparing Different Queue Implementations

- Which implementation is the best?
 - It seems that we need some tools to analyze and compare the performance of different implementations
- This is the part of the course where we enter the Algorithms and study the tools for analyzing them