
Abstract Data Types

Lecture 5

CS0445: Algorithms and Data Structures 1

Abstract Data Types (ADT)

• We are familiar with data types in Java
• For example some primitive data types: int, float, double,

boolean, or object types such as String, StringBuilder, JButton
and File

• We know how to define a new data type

• Each data type encapsulates inside:
• Some data and its representation in memory

• For classes these are the instance variables
• The operations by which the data can be manipulated

• For classes these are the methods

2

Abstract Data Type (ADT):

result of the process of abstraction

❑ A specification of data to be stored together
with a set of operations on that data

❑ ADT = Data + Operations

➢ Abstraction - the process of extracting only essential
property from a real-life entity

➢ In CS: Problem → storage + operations

Abstraction in Computer Science

3

ADT is a mathematical concept
(from theory of concepts)

ADT is a language-agnostic concept

❑ Different languages support ADT in different ways

❑ In Java, use class (abstract class, interface) construct to
declare a new ADT

ADT includes:

❑ Specification:

■ What needs to be stored

■ What operations should be supported

❑ Implementation:

■ Data structures and algorithms used to meet the
specification

4

ADT: Specification vs. implementation

Specification and implementation have to be disjoint:

❑ One specification

❑ One or more implementations

▪ Using different data structures

▪ Using different algorithms

Specification is expressed by defining the public variables and
methods

Implementation implements these declared methods

• ADT is a specification of a data type (data + operations) which
is separated from its implementation

• It is just an idea of “what we want”

Example: ADT Big Integer

• Specification:

• Data to be stored: arbitrarily sized whole numbers

• Supported operations: +, -, *, /, %

• Sample implementation:

• BigInteger type in Java

6

Using ADT vs. implementing it

• In order to use BigIntegers in our programs, we ONLY need to
know what they are and what their operations do

• We do NOT need to know their implementation details

• How the BigInteger is represented in memory?

• What algorithm is used for the division operation?

• For the purposes of using BigInteger in your program, the
implementation details do not matter

• These are abstracted out of our view!

• In this course you will look at ADTs both from the user's and
implementer's point of view

7

ADT specification in Java: interface

• We can use Interfaces to specify the idea of the desired type:

• Interface is the most abstract concept in Java

• Specifies a set of methods – a set of behaviors or abilities

• Does not specify how those methods should actually be
implemented

• Does not specify how the data needs to be structures in
memory

• The textbook will typically use interfaces as ADT specifications and
classes as ADT implementations

8

ADT specification in Java: class

• However any class with its public methods can be used as an
ADT:

• The body of the method can be implemented differently
without affecting the users of the class

• The data storage can be replaced with more efficient data
structures

• All this without affecting the users of a class – as long as the
public interface (method signatures) does not change

9

The art of Abstraction

• We model a real-life problem using a concept of ADT:

• Take a problem

• Think what is important to solve this particular problem

• Abstract the multitude of properties of a real-life entity into a
minimal set of data + supported operations

10

Enso – abstract symbol for absolute
enlightenment: strength, elegance,
the universe, and mu (the void)

This is NOT the kind of
abstraction we are talking
about

Example: Doctor queue

We want to model a list of patients waiting in the Hospital ER

➢ When a new patient arrives - we should be able to add him to
the queue

➢ When the doctor calls for the next patient, we should be able
to remove the patient from the front of the queue

11

Abstraction of Patient List: Queue

• If these are the only two required operations, then we can
model the Doctor queue using a Queue ADT

• The elements in the Queue are sorted by timestamp: from the
earlier to the later

• This ADT is called a FIFO Queue (First In First Out)

12

A B C RearFront

1 2 3

Queue: Abstract Data Type which supports the following

operations:

➔ Enqueue(e): adds element e to collection

➔ Dequeue(): removes and returns least recently-added

key

➔ Boolean IsEmpty(): are there any elements?

➔ Boolean IsFull(): is there any space left?

Specification

13

Implementation

• We need a data structure to store the elements of the queue

• The only data structure we used so far is an array

• So let’s try to maintain the queue as an array and implement
the required operations

14

Definition

Array is a contiguous area of memory containing
equal-sized elements indexed by contiguous integers

0 1 2 3 4 5 6

int A []

arrayAddr

=200

204

4 bytes

0 1 2 3 4 5 6

• Because of contiguous arrangement we can directly access
any element of the array by index i.

• The address of A[i] is computed as:

 arrayAddr + elemSize × (i)

 and we can jump directly to this address

• For example, address of A[3] = 200+3*4 = 212

• Array elements must stay contiguous (no gaps)

Array elements must stay contiguous

int A []

200

4 bytes

A[3]

Edit operations: add/remove

• We can use space allocated for the array to store a variable
number of elements

• We just need to distinguish between the array capacity (the
number of allocated slots) and the actual number of elements in
the array (we will call it size)

• This is especially useful if we have array of references – we can
keep track of the number of actual objects in the array

5 8 3 12
size=4
capacity=7

We can store the actual
number of the elements added
to the array in a variable size

Add to the end of A

1. As long as capacity permits, add new element to the empty slot
at position size

2. Increment size by 1

5 8 3 12
size=4
capacity=7

5 8 3 12 4

A[size]=4
size=5
capacity=7

A
add(4)

Add in the middle of A

• We must keep elements consecutive: array is a contiguous
sequence in memory

• If we want to insert an element at some position j of A, we must
move all the elements from j to size-1 to the right

5 8 3 12 4
size=5
capacity=7

5 8 3 12 4

for (int i=size; i>j; i--)
 A[i] = A[i-1]

A[j]=9
size=6
capacity=7

5 8 9 3 12 4

We check that j is a
valid position:
j<=size

Shifting to the right

Remove from the end

• Simply decrement size

size=6
capacity=7

5 8 9 3 12 4

size=5
capacity=7

5 8 9 3 12 4

remove(size -1)

Remove in the middle (beginning)

• To remove element at position j, shift all elements from j+1 to
size-1 to the left and decrement size

size=6
capacity=7

5 8 9 3 12 4

for (int i=j+1; i<size; i++)
 A[i-1] = A[i]

size=5
capacity=7

8 9 3 12 4

remove(j=0)

check that j is a
valid position:
j<size

Shifting to the left

Queue ADT Implementation with Array

0
read

0
write

22

We have two pointers:
read and write

read – index in A where
the front element of the
queue is located

write – index in A where
the rear of the queue is
located

Initially, read=write=0

0

read

0

write

Enqueue(a)
23

Queue Implementation with Array

Queue Implementation with Array

0

read

1

write

a

24

Queue Implementation with Array

0

read

1

write

a

Enqueue(b)
25

0

read

2

write

a b

26

Queue Implementation with Array

0

read

2

write

a b

Dequeue()
27

Queue Implementation with Array

1

read

2

write

b

Dequeue() → a
28

Queue Implementation with Array

1

read

2

write

b

Enqueue(c)
29

Queue Implementation with Array

1

read

3

write

b c

30

Queue Implementation with Array

1

read

3

write

b c

Enqueue(d)
31

Queue Implementation with Array

1

read

4

write

b c d

32

Queue Implementation with Array

1

read

4

write

b c d

Dequeue()
33

Queue Implementation with Array

2

read

4

write

c d

Dequeue() → b
34

Queue Implementation with Array

2

read

4

write

c d

Enqueue(e)
35

Queue Implementation with Array

Concept of a Circular Array

2

read

4

write

c d

Enqueue(e)
36

0

1

23

4

Concept of a Circular Array

2

read

4

write

c d

Enqueue(e)
37

0

1

23

4

Queue Implementation with a circular Array

2

read

0

write

c d e

38

2

read

0

write

c d e

Enqueue(f)
39

Queue Implementation with a circular Array

2

read

1

write

f c d e

40

Queue Implementation with a circular Array

2

read

1

write

f c d e

Enqueue(g)
41

Queue Implementation with a circular Array

2

read

1

write

f c d e

Enqueue(g) → ERROR

Cannot set read = write

isFull() → True 42

Queue Implementation with a circular Array

2

read

1

write

f c d e

Dequeue()
43

Queue Implementation with a circular Array

3

read

1

write

f d e

Dequeue() → c
44

Queue Implementation with a circular Array

3

read

1

write

f d e

Dequeue()
45

Queue Implementation with a circular Array

4

read

1

write

f e

Dequeue() → d
46

Queue Implementation with a circular Array

4

read

1

write

f e

Dequeue()
47

Queue Implementation with a circular Array

0

read

1

write

f

Dequeue() → e
48

Queue Implementation with a circular Array

0

read

1

write

f

Dequeue()
49

Queue Implementation with a circular Array

1

read

1

write

Dequeue() → f
50

Queue Implementation with a circular Array

1

read

1

write

IsEmpty() → True
51

Queue Implementation with a circular Array

Queue Implementation using Array

➔ Queue ADT can be implemented with a circular Array

➔ We need 2 pointers (indexes of the array): read and write

➔ When we enqueue(e) we add e at position write, and increment
write. If write was at the last position, it wraps around to position 0

➔ After enqueue(e) read and write cannot be equal - because
next time you write you would erase the first element of the queue
pointed to by read

➔ When we dequeue() we remove the element at position read, and
increment read

➔ If read=write then the queue is empty

52

We hide implementation details from
users of ADT

Users of ADT:

❑ Aware of the specification only

■ Usage only based on the specified operations

❑ Do not care / need not know about the actual implementation

■ i.e. Different implementations do not affect the users of ADT

53

A Wall of ADT

■ ADT operations provide:

❑ Interface to data structures

❑ Secure access

54

Ex. The users of our
Queue implementation do
not know that there is an
array, or what is a
capacity of this array: only
if it is full or empty.

Violating the abstraction

■ User programs should not:
❑ Use the underlying data structure directly
❑ Depend on implementation details

55

Advantages of ADT

■ Hide the implementation details by building walls around the data
and operations

❑ So that changes in either will not affect other
program components that use them

■ Functionalities are less likely to change

■ Localize rather than globalize changes

■ This helpx manage software complexity

56

Different Queue Implementations

• Queue ADT can be implemented using a regular Array, where
the front is always at position 0, and rear at position size

• This queue implementation requires shifting all the data to the
left when we dequeue

• Queue ADT can be implemented using a circular Array – as
demonstrated above

• Later in the course we will learn how to implement Queue ADT
using Linked List

57

Comparing Different Queue
Implementations

• Which implementation is the best?

• It seems that we need some tools to analyze and compare the
performance of different implementations

• This is the part of the course where we enter the Algorithms and
study the tools for analyzing them

58

	Slide 1: Abstract Data Types
	Slide 2: Abstract Data Types (ADT)
	Slide 3: Abstraction in Computer Science
	Slide 4: ADT is a mathematical concept (from theory of concepts)
	Slide 5: ADT: Specification vs. implementation
	Slide 6: Example: ADT Big Integer
	Slide 7: Using ADT vs. implementing it
	Slide 8: ADT specification in Java: interface
	Slide 9: ADT specification in Java: class
	Slide 10: The art of Abstraction
	Slide 11: Example: Doctor queue
	Slide 12: Abstraction of Patient List: Queue
	Slide 13: Specification
	Slide 14: Implementation
	Slide 15: Definition
	Slide 16: Array elements must stay contiguous
	Slide 17: Edit operations: add/remove
	Slide 18: Add to the end of A
	Slide 19: Add in the middle of A
	Slide 20: Remove from the end
	Slide 21: Remove in the middle (beginning)
	Slide 22: Queue ADT Implementation with Array
	Slide 23: Queue Implementation with Array
	Slide 24: Queue Implementation with Array
	Slide 25: Queue Implementation with Array
	Slide 26: Queue Implementation with Array
	Slide 27: Queue Implementation with Array
	Slide 28: Queue Implementation with Array
	Slide 29: Queue Implementation with Array
	Slide 30: Queue Implementation with Array
	Slide 31: Queue Implementation with Array
	Slide 32: Queue Implementation with Array
	Slide 33: Queue Implementation with Array
	Slide 34: Queue Implementation with Array
	Slide 35: Queue Implementation with Array
	Slide 36: Concept of a Circular Array
	Slide 37: Concept of a Circular Array
	Slide 38: Queue Implementation with a circular Array
	Slide 39: Queue Implementation with a circular Array
	Slide 40: Queue Implementation with a circular Array
	Slide 41: Queue Implementation with a circular Array
	Slide 42: Queue Implementation with a circular Array
	Slide 43: Queue Implementation with a circular Array
	Slide 44: Queue Implementation with a circular Array
	Slide 45: Queue Implementation with a circular Array
	Slide 46: Queue Implementation with a circular Array
	Slide 47: Queue Implementation with a circular Array
	Slide 48: Queue Implementation with a circular Array
	Slide 49: Queue Implementation with a circular Array
	Slide 50: Queue Implementation with a circular Array
	Slide 51: Queue Implementation with a circular Array
	Slide 52: Queue Implementation using Array
	Slide 53: We hide implementation details from users of ADT
	Slide 54: A Wall of ADT
	Slide 55: Violating the abstraction
	Slide 56: Advantages of ADT
	Slide 57: Different Queue Implementations
	Slide 58: Comparing Different Queue Implementations

