
Generic Types

Lecture 4

CS0445: Algorithms and Data Structures 1

Object is the most “generic” type

public class ObjectPair {

 Object first;

 Object second;

 public ObjectPair(Object a, Object b) {

 first = a;

 second = b;

 }

 public Object getFirst() { return first; }

 public Object getSecond() { return second; }

}

ObjectPair bid = new ObjectPair("ORCL", 32.07);

Object o = bid.getFirst();

String stock = (String) o;

2

casting: Object to String

Danger! Might be not String → Run-Time error

Reference variable of
type Object – the
superclass of anything

Object is the most “generic” type

public class ObjectPair {

 Object first;

 Object second;

 public ObjectPair(Object a, Object b) {

 first = a;

 second = b;

 }

 public Object getFirst() { return first; }

 public Object getSecond() { return second; }

}

ObjectPair bid = new ObjectPair("ORCL", 32.07);

Object o = bid.getFirst();

if (o isnstanceOf (String))

 String stock = (String) o;
3

We can check, of course

Parametrized types

public class Pair<A,B> {

 A first;

 B second;

 public Pair(A a, B b) {

 first = a;

 second = b;

 }

 public A getFirst() { return first; }

 public B getSecond() { return second; }

}

Pair<String,Double> bid = new Pair<>("ORCL", 32.07);

String stock = bid.getFirst();

double price = bid.getSecond();
4

No casting is required
Safe use of types
Checked by compiler

Generics

• We define formal types
using variables: letters A, B

5

public class Pair<A,B> {

 A first;

 B second;

 public Pair(A a, B b) {

 first = a;

 second = b;

 }

 public A getFirst() { …}

 public B getSecond() { … }

}

Generics

• We define formal types
using variables: letters A, B

• We substitute these formal
letters with actual data
types when we create an
instance of a generic class

6

public class Pair<A,B> {

 A first;

 B second;

 public Pair(A a, B b) {

 first = a;

 second = b;

 }

 public A getFirst() { …}

 public B getSecond() { … }

}

Pair<String,Double> bid

 = new Pair<>("ORCL", 32.07);

Generics

• We define formal types
using variables: letters A, B

• We substitute these formal
letters with actual data
types when we create an
instance of a generic class

• Each formal type letter is
replaced with an actual data
type throughout the entire
class

7

public class Pair<String,Double>
{

 String first;

 Double second;

 public Pair(String a,

 Double b) {

 first = a;

 second = b;

 }

 public String getFirst(){…}

 public Double getSecond(){…}

}

Pair<String,Double> bid

 = new Pair<>("ORCL", 32.07);

The benefits of Generic types

• Type safety which is checked during compilation, and not during
run time

• Collections:

• Without generics we can create a collection of Objects – but
this will allow elements of heterogeneous types to be mixed
together

• Using generics we ensure that all the slots in the collection are
of the same type T. This will allow to use the methods defined
in the corresponding class

• Algorithms:

• We can implement an algorithm which works with different
types of data. We do not write a special implementation for
integers, doubles, Strings …

8

Example 1: generic array

9

• Array of Objects:

 Object A [] = new Object [10];

• We can place into A objects of any type, for example objects of
type String

• However we can also place objects of any other type alongside
Strings

• Generic array:

T A [] = new T [10];

• We want the objects in our collection to be related somewhat –
to have the same type T

• Using generics, we restrict the types of entries stored in our
array

Building an array of a general type

• Java requires that the type of elements in the array will be specified
when the array is created

• So the declaration on the previous slide would not compile:

 T A [] = new T [10];

• We will create a class that mimics a simple Java array but allows to
store the elements of an arbitrary (and uniform) type

10

Specs of our generic array

• The capacity of the array (the number of slots) is determined
when the array is created

• We want the type of elements to be any Java type

• However, it should be homogeneous – cannot mix types

• We want to be able to tell the size (the actual number of
elements) in the array

• As in a normal (not generic) array:

• We want to be able to assign a value at a given index

• We want to be able to retrieve a value from a specified location

11

Array storing homogeneous things

• <T> is a formal type
parameter

• We reference type T
through the class body

• <T> is just a
placeholder for the
future data type

• All Ts will be
substituted with an
actual type during
compilation

public class MyArray<T> {

 private T [] theArray;

 public T get(int i) {

 return theArray[i];

 }

 public void set(int i, T data) {

 theArray[i] = data;

 }

}

12

Can we store primitives in MyArray?

• The actual types that can substitute type parameters <T> MUST be
of reference type (Think: why?)

• Primitive types, such as int, boolean, and float are not allowed

• Fortunately, Java provides wrapper classes for each of the primitive
types:

MyArray<String> S = new MyArray<String>(5);

MyArray<MyRectangle> R= new MyArray<MyRectangle>(3);

13

MyArray<Integer> I = new MyArray<Integer>(10);

Using MyArray

• Now you can substitute T with any Java reference type

• As we wanted: the data is of an arbitrary type, but still of the same
type throughout the array

MyArray<String> S = new MyArray<String>(5);

public class MyArray<T> {…}

14

MyArray: constructor

• Note how the array is created

• We make an array of type Object and cast it to T

• This is necessary due to Java type rules for arrays

15

@SuppressWarnings("unchecked")

T [] temp = (T []) new Object[size];

theArray = temp;

Demo

16

See MyArray.java and Example4.java

Example 2: generic sorting

• Let’s look at a simple sorting algorithm: Selection sort

• Find smallest, swap into location 0

• Find next smallest, swap into location 1, etc.

• Say, we implemented this algorithm for an array of integers

17

public static void selectionSort (int[] a, int n) {

 for (int i = 0; i < n - 1; i++) {

 int iNextSmallest = getIndexOfSmallest(a, i, n-1);

 swap(a, i, iNextSmallest);

 }

}

Sorting objects of any type

• What if we want to sort an arrays of doubles? Array of Strings? Array
of Dogs?

• We would need to write a different method for each type!!!

• We can compare numbers, Strings using < sign.

• But what about people, grades etc?

• Can we write a single method that can sort anything?

• We can’t really sort “anything”, but we can write a method that
can sort any Comparable objects

18

Comparable<T> interface

• Consider the Comparable<T> interface:

• It contains one method:

 int compareTo (T another);

• Returns:

▪ a negative number if the current object is less than another

▪ 0 if the current object equals another

▪ a positive number if the current object is greater than another

• The type parameter T allows arbitrary data type but with compile-
time type checking to ensure that two objects to be compared are of
the same type

19

Example of a Comparable class

20

public class MyRectangle implements

 Comparable<MyRectangle> {

 public int compareTo(MyRectangle other) {

 if (this.area() > other.area())

 return 1;

 if (this.area() < other.area())

 return -1;

 return 0;

 }

Could have been simplified because area() returns an int:

public int compareTo(MyRectangle other) {

 return this.area() – other.area();

}

We can sort only Comparable things

• Consider what we need to know to sort data:

 is A[i] less than, equal to or greater than A[j]?

• That's it!

• Thus, we can sort Comparable data without knowing
anything else about it

21

Abstracting Objects into
Comparable black boxes

• Think of the objects we want to sort as “black boxes”

• We know we can compare them because they implement
Comparable

• Each type can implement compareTo() to be tailored to that
type

• We don’t know (or need to know) anything else about
them – even though they may have many other methods /
instance variables – that is all irrelevant to sorting

• Thus, a single sort method will work for an array of any class that
implements Comparable

• Did I mention that this was awesome!?

22

/** Sorts the first n objects in an array into ascending order.*/

public static <T extends Comparable<T>>
void selectionSort (T[] a, int n)

{
 for (int i = 0; i < n - 1; i++) {
 int iNextSmallest
 = getIndexOfSmallest(a, i, n - 1);
 swap(a, i, iNextSmallest);
 }

}

Generic sorting: 1/2

• Input is array of T where
T is Comparable

23

private static <T extends Comparable<T>>
 int getIndexOfSmallest(T[] a, int first, int last){

T min = a[first];
 int indexOfMin = first;
 for (int index = first + 1; index <= last; index++){

 if (a[index].compareTo(min) < 0) {
 min = a[index];
 indexOfMin = index;
 }
 }

 return indexOfMin;
}

Generic sorting: 2/2

• Code depends only on the
fact that the data in the array
is Comparable

• The only generic method
called is compareTo()

• Via polymorphism,
compareTo() will be specific to
each data type

24

See how we are declaring
parametrized type here in
the method header

Generics ensure that we sort the objects
of the same type

• An array of any Comparable objects can be sorted

• However using the same type parameter T – we restrict the
objects to be of exactly the same type

• Cannot compare objects from inherently different types: don’t
want to compare “apples to oranges”

• Note that the argument to compareTo is type T

• T can be arbitrary but it must be compatible for two objects
that are being compared

• If the types are not compatible, a compile-time error will be
generated

25

What is wrong with the following code?

26

public final class Min1 {
public static <T> T smallerOf (T x, T y) {

 if (x < y)
 return x;
 else
 return y;
 }
}

Is this better?

27

public final class Min2 {
public static <T extends Comparable<T>> T

smallerOf (T x, T y) {
 if (x < y)
 return x;
 else
 return y;
 }
}

A correct version

28

public final class Min2 {
public static <T extends Comparable<T>> T

smallerOf (T x, T y) {
if (x.compareTo(y) < 0)

 return x;
 else
 return y;
 }
}

Wild cards

• What if we want to use polymorphic method calls and the elements
in our collection are different subclasses of some common
superclass?

• We should be able to define a generic type that can be
substituted by any subclass

• However with a generic type T we can only use objects of exactly
the same type

• This incompatibility may be softened by the wildcard: we use ? as
an actual type parameter

• ? stands for an any type

29

Upper-bounded wildcards

• These wildcards can be used when you want to relax the restrictions
on a type: any subclass of this type

30

Shape
draw()

Rectangle
draw()

Triangle
draw()

Oval
draw()l

public void drawAll (

 List<? extends Shape> shapes)

{ … }

public static void sum (

 List<? extends Number> list)

{ … }

Example 1:

you want to write a method that
adds all elements of the List, as long
as they are numeric

Example 2: list of Shapes

Read ? as: anything
that extends
Number, any
subclass of Number

Lower-bounded wildcards

• It is expressed using the wildcard character (‘?’), followed by the
super keyword, followed by its lower bound: <? super T>

• A lower bounded wildcard restricts the unknown type to be a specific
type or a super of that type

• Example: you want to write a method that puts Integer objects into a
list. To maximize flexibility, you would like the method to work on
List<Integer>, List<Number>, and List<Object> — anything that can
potentially hold Integer values, or can be cast to Integer

31

public static void sum (List<? super Integer> list)

{ … }

Wildcards in our sorting implementation

• That means we can have an the input array of type T and the
Comparable must be implemented in any super of T

• This allows to compare different subclasses if the compareTo is
defined for the superclass

See Example3.java

• Here we have an array of People and the compareTo is defined in
a People class: compares by age

• The array is filled with Students, Workers and other subclasses of
People, but they are all valid types because their superclass has an
implementation of Comparable interface

32

public static <T extends Comparable<? super T>>
void selectionSort (T[] a, int n)

Demo

33

See SortArray.java and Example3.java

People
compareTo()

Student Worker

	Slide 1: Generic Types
	Slide 2: Object is the most “generic” type
	Slide 3: Object is the most “generic” type
	Slide 4: Parametrized types
	Slide 5: Generics
	Slide 6: Generics
	Slide 7: Generics
	Slide 8: The benefits of Generic types
	Slide 9: Example 1: generic array
	Slide 10: Building an array of a general type
	Slide 11: Specs of our generic array
	Slide 12: Array storing homogeneous things
	Slide 13: Can we store primitives in MyArray?
	Slide 14: Using MyArray
	Slide 15: MyArray: constructor
	Slide 16: Demo
	Slide 17: Example 2: generic sorting
	Slide 18: Sorting objects of any type
	Slide 19: Comparable<T> interface
	Slide 20: Example of a Comparable class
	Slide 21: We can sort only Comparable things
	Slide 22: Abstracting Objects into Comparable black boxes
	Slide 23: Generic sorting: 1/2
	Slide 24: Generic sorting: 2/2
	Slide 25: Generics ensure that we sort the objects of the same type
	Slide 26: What is wrong with the following code?
	Slide 27: Is this better?
	Slide 28: A correct version
	Slide 29: Wild cards
	Slide 30: Upper-bounded wildcards
	Slide 31: Lower-bounded wildcards
	Slide 32: Wildcards in our sorting implementation
	Slide 33: Demo

