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Object is the most “generic” type

public class ObjectPair {

    Object first;

    Object second;

    public ObjectPair(Object a, Object b) {         

        first = a;

        second = b;

    }

    public Object getFirst() { return first; }

    public Object getSecond() { return second; }

}

ObjectPair bid = new ObjectPair("ORCL", 32.07);

Object o = bid.getFirst();

String stock = (String) o;  
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casting: Object to String

Danger! Might be not String → Run-Time error

Reference variable of 
type Object – the 
superclass of anything



Object is the most “generic” type

public class ObjectPair {

    Object first;

    Object second;

    public ObjectPair(Object a, Object b) {         

        first = a;

        second = b;

    }

    public Object getFirst() { return first; }

    public Object getSecond() { return second; }

}

ObjectPair bid = new ObjectPair("ORCL", 32.07);

Object o = bid.getFirst();

if (o isnstanceOf (String))

 String stock = (String) o;  
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We can check, of course



Parametrized types

public class Pair<A,B> {

    A first;

    B second;

    public Pair(A a, B b) {        

        first = a;

        second = b;

    }

    public A getFirst() { return first; }

    public B getSecond() { return second; }

}

Pair<String,Double> bid = new Pair<>("ORCL", 32.07); 

String stock = bid.getFirst();

double price = bid.getSecond();
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No casting is required
Safe use of types
Checked by compiler



Generics

• We define formal types 
using variables: letters A, B
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public class Pair<A,B> {

    A first;

    B second;

    public Pair(A a, B b) {        

        first = a;

        second = b;

    }

    public A getFirst()  { …}

    public B getSecond() { … }

}



Generics

• We define formal types 
using variables: letters A, B

• We substitute these formal 
letters with actual data 
types when we create an 
instance of a generic class
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public class Pair<A,B> {

    A first;

    B second;

    public Pair(A a, B b) {        

        first = a;

        second = b;

    }

    public A getFirst()  { …}

    public B getSecond() { … }

}

Pair<String,Double> bid 

 = new Pair<>("ORCL", 32.07); 



Generics

• We define formal types 
using variables: letters A, B

• We substitute these formal 
letters with actual data 
types when we create an 
instance of a generic class

• Each formal type letter is 
replaced with an actual data 
type throughout the entire 
class
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public class Pair<String,Double> 
{

    String first;

    Double second;

    public Pair(String a, 

    Double b) {        

        first = a;

        second = b;

    }

    public String getFirst(){…}

    public Double getSecond(){…}

}

Pair<String,Double> bid 

 = new Pair<>("ORCL", 32.07); 



The benefits of Generic types

• Type safety which is checked during compilation, and not during 
run time

• Collections:

• Without generics we can create a collection of Objects – but 
this will allow elements of heterogeneous types to be mixed 
together 

• Using generics we ensure that all the slots in the collection are 
of the same type T. This will allow to use the methods defined 
in the corresponding class

• Algorithms:

• We can implement an algorithm which works with different 
types of data. We do not write a special implementation for 
integers, doubles, Strings …
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Example 1: generic array
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• Array of Objects:

 Object A []  = new Object [10];

• We can place into A objects of any type, for example objects of 
type String

• However we can also place objects of any other type alongside 
Strings 

• Generic array:

T A []  = new T [10];

• We want the objects in our collection to be related somewhat – 
to have the same type T

• Using generics, we restrict the types of entries stored in our 
array



Building an array of a general type

• Java requires that the type of elements in the array will be specified 
when the array is created

• So the declaration on the previous slide would not compile:

 T A []  = new T [10];

• We will create a class that mimics a simple Java array but allows to 
store the elements of an arbitrary (and uniform) type
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Specs of our generic array

• The capacity of the array (the number of slots) is determined 
when the array is created

• We want the type of elements to be any Java type

• However, it should be homogeneous – cannot mix types

• We want to be able to tell the size (the actual number of 
elements) in the array

• As in a normal (not generic) array:

• We want to be able to assign a value at a given index

• We want to be able to retrieve a value from a specified location
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Array storing homogeneous things

• <T> is a formal type 
parameter

• We reference type T 
through the class body

• <T> is just a 
placeholder for the 
future data type

• All Ts will be 
substituted with an 
actual type during 
compilation

public class MyArray<T> {

  private T [ ] theArray; 

  public T get(int i) {

    return theArray[i];

  }

 

  public void set(int i, T data) {

    theArray[i] = data;

  }

}
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Can we store primitives in MyArray?

• The actual types that can substitute type parameters <T> MUST be 
of reference type (Think: why?) 

• Primitive types, such as int, boolean, and float are not allowed  

• Fortunately, Java provides wrapper classes for each of the primitive 
types: 

MyArray<String> S = new MyArray<String>(5);

MyArray<MyRectangle> R= new MyArray<MyRectangle>(3);
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MyArray<Integer> I = new MyArray<Integer>(10);



Using MyArray

• Now you can substitute T with any Java reference type

• As we wanted: the data is of an arbitrary type, but still of the same 
type throughout the array  

MyArray<String> S = new MyArray<String>(5);

public class MyArray<T> {…}

14



MyArray: constructor

• Note how the array is created

• We make an array of type Object and cast it to T

• This is necessary due to Java type rules for arrays
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@SuppressWarnings("unchecked")

T [] temp = (T []) new Object[size];

theArray = temp;



Demo
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See MyArray.java and Example4.java



Example 2: generic sorting

• Let’s look at a simple sorting algorithm: Selection sort

• Find smallest, swap into location 0

• Find next smallest, swap into location 1, etc.

• Say, we implemented this algorithm for an array of integers
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public static void selectionSort (int[] a, int n)   {

   for (int i = 0; i < n - 1; i++)      {

      int iNextSmallest = getIndexOfSmallest(a, i, n-1);

      swap(a, i, iNextSmallest);

   }      

}



Sorting objects of any type

• What if we want to sort an arrays of doubles? Array of Strings? Array 
of Dogs?

• We would need to write a different method for each type!!!

• We can compare numbers, Strings using < sign. 

• But what about people, grades etc?

• Can we write a single method that can sort anything?

• We can’t really sort “anything”, but we can write a method that 
can sort any Comparable objects
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Comparable<T> interface

• Consider the Comparable<T> interface:

• It contains one method:

  int compareTo (T another);

• Returns:

▪ a negative number if the current object is less than another

▪ 0 if the current object equals another 

▪ a positive number if the current object is greater than another

• The type parameter T allows arbitrary data type but with compile-
time type checking to ensure that two objects to be compared are of 
the same type
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Example of a Comparable class
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public class MyRectangle implements  

   Comparable<MyRectangle> {

   public int compareTo(MyRectangle other) {

 if (this.area() > other.area())

  return 1;

 if (this.area() < other.area())

  return -1;

 return 0;

   }

Could have been simplified because area() returns an int:

public int compareTo(MyRectangle other) {

 return this.area() – other.area();

}



We can sort only Comparable things

• Consider what we need to know to sort data:

 is A[i] less than, equal to or greater than A[j]?

• That's it!

• Thus, we can sort Comparable data without knowing 
anything else about it
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Abstracting Objects into 
Comparable black boxes

• Think of the objects we want to sort as “black boxes”

• We know we can compare them because they implement 
Comparable

• Each type can implement compareTo() to be tailored to that 
type 

• We don’t know (or need to know) anything else about 
them – even though they may have many other methods / 
instance variables – that is all irrelevant to sorting

• Thus, a single sort method will work for an array of any class that 
implements Comparable

• Did I mention that this was awesome!?
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/** Sorts the first n objects in an array into ascending order.*/

public static <T extends Comparable<T>>  
void selectionSort (T[] a, int n)

{
    for (int i = 0; i < n - 1; i++)    {
        int iNextSmallest 
   = getIndexOfSmallest(a, i, n - 1);
        swap(a, i, iNextSmallest);
    }
      
}

Generic sorting: 1/2

• Input is array of T where 
T is Comparable
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private static <T extends Comparable<T>>
 int getIndexOfSmallest(T[] a, int first, int last){
    
T min = a[first];
    int indexOfMin = first;
    for (int index = first + 1; index <= last; index++){

        if (a[index].compareTo(min) < 0) {
            min = a[index];
            indexOfMin = index;
        } 
    } 

    return indexOfMin;
}

Generic sorting: 2/2

• Code depends only on the 
fact that the data in the array 
is Comparable

• The only generic method 
called is compareTo()

• Via polymorphism, 
compareTo() will be specific to 
each data type
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See how we are declaring 
parametrized type here in 
the method header



Generics ensure that we sort the objects 
of the same type

• An array of any Comparable objects can be sorted

• However using the same type parameter T – we restrict the 
objects to be of exactly the same type

• Cannot compare objects from inherently different types: don’t 
want to compare “apples to oranges”

• Note that the argument to compareTo is type T

• T can be arbitrary but it must be compatible for two objects 
that are being compared

• If the types are not compatible, a compile-time error will be 
generated 
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What is wrong with the following code?
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public final class Min1 {
public static <T> T smallerOf (T x, T y)  {

      if (x < y)
         return x;
      else
         return y;
   } 
} 



Is this better?
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public final class Min2 {
public static <T extends Comparable<T>> T 

smallerOf (T x, T y)  {
      if (x < y)
         return x;
      else
         return y;
   } 
} 



A correct version
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public final class Min2 {
public static <T extends Comparable<T>> T 

smallerOf (T x, T y)  {
if (x.compareTo(y) < 0)

         return x;
      else
         return y;
   } 
}  



Wild cards

• What if we want to use polymorphic method calls and the elements 
in our collection are different subclasses of some common 
superclass? 

• We should be able to define a generic type that can be 
substituted by any subclass

• However with a generic type T we can only use objects of exactly 
the same type

• This incompatibility may be softened by the wildcard: we use ? as 
an actual type parameter

• ? stands for an any type
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Upper-bounded wildcards

• These wildcards can be used when you want to relax the restrictions 
on a type: any subclass of this type
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Shape
draw()

Rectangle
draw()

Triangle
draw()

Oval
draw()l

public void drawAll (

  List<? extends Shape> shapes) 

{ … } 

public static void sum (

   List<? extends Number> list)

{ … }

Example 1: 

you want to write a method that 
adds all elements of the List, as long 
as they are numeric

Example 2: list of Shapes

Read ? as: anything 
that extends 
Number, any 
subclass of Number



Lower-bounded wildcards

• It is expressed using the wildcard character (‘?’), followed by the 
super keyword, followed by its lower bound: <? super T> 

• A lower bounded wildcard restricts the unknown type to be a specific 
type or a super of that type

• Example: you want to write a method that puts Integer objects into a 
list. To maximize flexibility, you would like the method to work on 
List<Integer>, List<Number>, and List<Object> — anything that can 
potentially hold Integer values, or can be cast to Integer
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public static void sum (List<? super Integer> list)

{ … }



Wildcards in our sorting implementation

• That means we can have an the input array of type T and the 
Comparable must be implemented in any super of T

• This allows to compare different subclasses if the compareTo is 
defined for the superclass

See Example3.java

• Here we have an array of People and the compareTo is defined in 
a People class: compares by age

• The array is filled with Students, Workers and other subclasses of 
People, but they are all valid types because their superclass has an 
implementation of Comparable interface
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public static <T extends Comparable<? super T>>  
void selectionSort (T[] a, int n)



Demo
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See SortArray.java and Example3.java

People
compareTo()

Student Worker
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