
Inheritance, Interfaces,
Polymorphism

Lecture 3

CS0445: Algorithms and Data Structures 1

Creating New Types (Classes)

• Rarely we build the entire new class from scratch:

 we reuse other classes

• There are two primary techniques for doing this

• Composition (Aggregation)

• Inheritance

2

Factoring-out similarities

• When we define a set of new types (classes) we often find that
there are similarities among them

• For example:

• Class Tiger and class Bear – both have a lot in common:

 move(), eat(), sleep(), makeNoise()

• Instead of repeating these methods for each class, we can
factor out similarities and define these methods in a single class
Animal

Tiger is an Animal Bear is an Animal
3

Inheritance hierarchy

• Where there’s inheritance, there’s an Inheritance Hierarchy of classes

• Mammal “is an” Animal

• Cat “is a” Mammal

• Transitive relationship: Cat “is an” Animal too

• We can say:

• Reptile, Mammal and Fish inherit from Animal

• Dog, Cat, and Moose inherit from Mammal

Animal

Reptile Mammal Fish

Cat MooseDog

Subclass of
class Animal

Animal is a

superclass

4

Inheriting properties (fields) and
capabilities (methods)

• Subclass inherits all capabilities of its superclass

• if Animals eat and sleep, then Reptiles, Mammals, and Fish
eat and sleep

• if Vehicles move, then SportsCars move

• Subclass specializes its superclass

• adding new fields and methods

• overriding (redefining) existing methods

• Superclass factors out capabilities common among its subclasses

• Subclasses are defined by their differences from their superclass

5

Inheritance: constructor of a subclass

• A subclass inherits all the protected members (fields, methods,
and nested classes) from its superclass

• Constructors are not inherited by subclasses, but the
constructor of the superclass can be invoked from the subclass

public class Animal {
 public Animal() {
 this.name = "?";
 this.energyLevel = 100;
 this.x = 0;
 this.y=0;
 }

 public Animal(String name) {
 this();
 this.name = name;
 }

 public Animal(String name, String diet) {
 this(name);
 this.diet = diet;
 }
}

public class Cat extends Animal{
 public Cat() {
 super("Cat", "mice");
 }
 …
}

6

using super() is not compulsory.
Even if super() is not used in the
subclass constructor, the compiler
implicitly calls the default
constructor of the superclass.

When to use inheritance

• When one class is a more specific version of another:

SportsCar extends Car

• When you have a method that is the same for a set of classes:

Square, Circle, Triangle all need to have move() method in the
animation program, so make Shape their superclass

• Test:

• if you can say: X IS A Y, then use inheritance

• If you can say: X HAS A Y use composition

7

“IS A” test

• Which of the following is the correct use of inheritance:

A. class Oven extends Kitchen

B. class Guitar extends Instrument

C. class Ferrari extends Engine

D. class Person extends Student

E. None of the above

8

What is printed?

• A
Hello from A: 1
Hello from B: 5
Hello from C: 0

• B
Hello from A: 6
Hello from B: 5
Hello from C: 6

• C
Hello from A: 1
Hello from A: 5
Hello from C: 0

• D
None of the above

public class A {
 int iVar;

 public void hello() {
 System.out.println("Hello from A: " + iVar);
 }

 public void work() {
 iVar ++;
 }
}

public class B extends A{
 public void work() {
 iVar += 5;
 }
}

public class C extends A {
 public void hello () {
 System.out.println("Hello from C: " + iVar);
 }

}

IN MAIN:
A a = new A();
B b = new B();
C c = new C();

a.work();
b.work();

a.hello();
b.hello();
c.hello();

Why use inheritance

• Get rid of duplicate code by factoring out and implementing
common behavior

• Modify in one place, and the change is ‘magically’ carried out to all
subclasses

• Add new subclasses easily, and they have some methods and
properties right away

• Guarantee that all classes grouped under a certain
supertype have a common protocol

10

Polymorphism

• The reference and the object can be of different types in Java:

Animal c = new Cat();

Superclass Subclass

• Subclass is a superclass, and subclass objects can be assigned to
superclass variables

• Not vice versa!
• Superclass IS NOT a subclass and superclass objects cannot be

assigned to subclass variables

• c can be used both as an Animal and as a Cat

• c has “many forms” – polymorphism

• We can use polymorphic variables as method arguments, return
types or array types

11

Example: superclass and a subclass

public class Animal {
 protected String name;
 protected int energyLevel, x, y;
 protected String diet;

 public String getName() {return this.name;}

 public void move(int dX, int dY) {
 this.x += dX;
 this.y += dY;
 this.energyLevel-=(dX + dY);
 }

 public void eat() {

System.out.println(name +
" is eating " + diet);

 this.energyLevel ++;
 }

 public void sleep() {
 this.energyLevel ++;
 }

 public void makeNoise() {
 }
}

public class Cat extends Animal{
 public Cat() {
 super("Cat", "mice");
 }

 public void eat() {
 System.out.println("Cat is eating "
 + diet);
 this.energyLevel += 3;
 }

 public void makeNoise() {
 System.out.println("Purrr");
 }
}

Example: polymorphism

public class Animals {
 public static void main(String [] args) {
 Animal [] animals = new Animal[3];

 animals[0] = new Dog();
 animals[1] = new Cat();
 animals[2] = new Lion();

 for (Animal a: animals) {
 System.out.println(a);
 a.makeNoise();
 }
 }
}

Each animal makes
their own noise

• Because Dog, Cat and Lion are also Animals, we can store them in
array of Animals

• makeNoise is declared in Animal (though it has an empty body), so
we can call it on each element of the Animal array

13

Java classes: single-root hierarchy

• All classes in Java (including our new custom classes) are
subclasses of a single root superclass called Object

• When we create a new class that does not extend anything, this
means implicitly:

public class Dog extends Object

14

So what’s in Object?

• Important public methods implemented in Object (see here):

public String toString();

public boolean equals(Object obj);

public int hashCode();

• If you do not override these methods, you inherit them from the
Object class

15

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Extreme polymorphism

• This means that Dog inherits all the methods of Object
That also means that you can have a variable of class
Object and store in it a reference to any other type:

Object o = new Dog();

o = new String("hello");

16

However with this declaration we can only call the
methods of the Object class from variable o

Abstract classes

• We factored out all the
common code into class Animal

• However a generic Animal does
not know how:
makeNoise()

getPicture()

getColor()

…

• All these methods are not
applicable to a generic class
Animal

Lion is an Animal Bear is an Animal

How does Animal() look like?

We want to prevent anyone from
making an instance of Animal()

Animal class is too abstract!

17

Declare Animal to be an abstract class

• Shared code which is
applicable to all subclasses
is still in concrete methods

• We can declare all the
other methods abstract

• Abstract methods do not
have body

• If the class has at least
one abstract method, it
must be declared abstract

• You must implement all
abstract methods in a
subclass, if you want to
create instances of this
subclass

public abstract class Animal {
 protected String name;
 protected int energyLevel;
 ...

 public void move(int dX, int dY) {
 this.x += dX;
 this.y += dY;
 this.energyLevel --;
 }

 public void eat() {

...
 this.energyLevel ++;
 }

 public void sleep() {
 this.energyLevel ++;
 }

 public abstract void makeNoise();

 public abstract Picture getPicture();

}

18

No instances of abstract Animals

• You cannot create instances
of an abstract class:

Animal a = new Animal();

This will not compile

public abstract class Animal {
 protected String name;
 protected int energyLevel;
 ...

 public void move(int dX, int dY) {
 this.x += dX;
 this.y += dY;
 this.energyLevel --;
 }

 public void eat() {

...
 this.energyLevel ++;
 }

 public void sleep() {
 this.energyLevel ++;
 }

 public abstract void makeNoise();

 public abstract Picture getPicture();

}

19

Why we use Abstract classes

• Inheritance allows to store shared code in a superclass

• But sometimes we cannot find any generic code useful to all
subclasses

• In this case we declare a method in the superclass abstract (and
the entire superclass becomes abstract)

• Even though there is no code in an abstract method, it still
defines a common protocol that can be used in polymorphic
programs: each subclass of Animal must know how to
makeNoise()

• Compiler forces the concrete subclasses of an abstract class to
implement all the abstract methods

• If a subclass did not implement all the abstract methods, then it by
itself must be declared abstract

20

Polymorphism and Dynamic (late) Binding

• Polymorphism is implemented utilizing two important ideas

1. Method overriding

• A method defined in a superclass is redefined in a subclass with
an identical method signature

• For a subclass object, the definition in the subclass replaces
the version in the superclass, even if a superclass reference is
used to access the object

2. Late binding

• The code is associated with the method call during run-time

• The actual method executed is determined by the type of the
object, not the type of the reference

21

Example: Different Ways of Moving

• Ex. each subclass overrides the move()
method in its own way

Animal [] A = new Animal[3];

A[0] = new Bird();

A[1] = new Person();

A[2] = new Fish();

for (int i = 0; i < A.length; i++)

 A[i].move();

An
imal

move()

move()

move()

• Each call is syntactically identical:
method signature is the same

• Code executed is based on type of
actual object the variable points to

• The JVM finds what actual code to
execute during run time (late binding)

22

Factoring out partial commonalities

• The Animal class defines a contract for all Lion, Hippo, Cat and
Dog types

• We can use this hierarchy for Animal Simulation program

• But now we want to reuse some of the code from our Pet Store
program

• We want to add play() method to some animals but not to all

• Basically we want some of the animals have an additional contract
defined in superclass Pet

23

Java solution to multiple-inheritance
problem

• Java does not allow a class to extend more than one superclass =
it does not allow multiple inheritance

• However we can guarantee Pet behavior for all pet animals if we
define all shared methods in a special Java class – Interface

Not a GUI interface, not a colloquial use as in “public methods
provide interface”, but a special Java keyword Interface

24

Pet interface

• In Interface all methods
are abstract

• All subclasses must
implement all of them

• Subclass extends a
Superclass and
implements Interface

public interface Pet {
 public void play();
}

public class Dog extends Animal
 implements Pet{
 …
 public void makeNoise() {
 System.out.println("Wuff");
 }

 public void play() {
 System.out.println("Dog playing");
 this.makeNoise();
 }

}

public class Cat extends Animal
 implements Pet{

25

Why use Interface

If all the methods in Interface
are abstract – how is this code
reuse?

• A subclass can extend one
superclass and implement
multiple interfaces

• Common interface can be
used for polymorphism

public class PetStore {
 public static void main

 (String [] args) {
 Pet [] pets = new Pet [4];

 pets[0] = new Cat();
 pets[1] = new Cat();
 pets[2] = new Cat();
 pets[3] = new Dog();

 for (Pet p: pets) {
 p.play();
 }
 }
}

26

Java Interface

• A Java interface is (primarily) a named set of abstract methods

• Think of it as an abstract class with no concrete methods and no
instance variables

• Static constants are allowed

• Static methods are allowed

• No instance variables are allowed

• Regular methods have no bodies

• Interface itself cannot be instantiated

• Any Java class (no matter what its inheritance) can implement an
additional interface by implementing the methods defined in it

• A class can implement any number of interfaces

27

Example: zoo and pet store simulations

28

	Slide 1: Inheritance, Interfaces, Polymorphism
	Slide 2: Creating New Types (Classes)
	Slide 3: Factoring-out similarities
	Slide 4: Inheritance hierarchy
	Slide 5: Inheriting properties (fields) and capabilities (methods)
	Slide 6: Inheritance: constructor of a subclass
	Slide 7: When to use inheritance
	Slide 8: “IS A” test
	Slide 9: What is printed?
	Slide 10: Why use inheritance
	Slide 11: Polymorphism
	Slide 12: Example: superclass and a subclass
	Slide 13: Example: polymorphism
	Slide 14: Java classes: single-root hierarchy
	Slide 15: So what’s in Object?
	Slide 16: Extreme polymorphism
	Slide 17: Abstract classes
	Slide 18: Declare Animal to be an abstract class
	Slide 19: No instances of abstract Animals
	Slide 20: Why we use Abstract classes
	Slide 21: Polymorphism and Dynamic (late) Binding
	Slide 22: Example: Different Ways of Moving
	Slide 23: Factoring out partial commonalities
	Slide 24: Java solution to multiple-inheritance problem
	Slide 25: Pet interface
	Slide 26: Why use Interface
	Slide 27: Java Interface
	Slide 28: Example: zoo and pet store simulations

