
Pattern matching: 
part deux

Lecture 23



Shifting heuristics

• In the naive algorithm, we check the occurrence of pattern P 
in text T, each time aligning the start of P with the next 
character in T

• In the KMP algorithm we speed up the search by using some 
information about pattern P and the characters of T that 
were already aligned with P: This allows us to shift the start 
of P by more than one position in T



New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• As before, we first align the position 0 of the pattern with position 
0 of the text

• However, we compare characters of P starting from the last 
position of P, position M - 1 (where M is the length of P)

So we are moving the start position i in T 
from left to right, but we are  comparing 
the characters of P with characters of T 
from right to left.



New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we first compare C and B, we learn two things:
• C does not match B
• C does not appear anywhere in the pattern

Should we continue comparing T[2] and P[2]?



New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we first compare C and B, we learn two things:
• C does not match B
• C does not appear anywhere in the pattern

• Where should we position the pattern for the next round of 
comparisons?

• Which positions in T and P will we compare next?



New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

With one mismatch we shifted down the entire length of the 
pattern (M positions)!

• Some characters of T will be not compared at all!
• This could be a sublinear search!  (< N comparisons)

M positions forward



Pattern matching algorithms

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp



Boyer Moore algorithm

✓Bad character rule

• Bad suffix rule

• Good suffix rule (outside the scope of this course)



Bad suffix rule

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Now the mismatched character A DOES appear in the pattern
Still no need to compare the rest of characters 



Bad suffix rule

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A B A B

0 1 2 3

A B A B

0 1 2 3

1

2

How far should we slide the pattern for the next comparison?
1 or 2?



Bad suffix rule

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A B A B

0 1 2 3
1

• When shifting the pattern to the right, we must make sure not to 
go farther than where the mismatched character A is first seen 
(from the right) in P

• For each letter of the alphabet we need to know its last 
occurrence in P



Pattern preprocessing for the BM algorithm

• How can we figure out how far to skip?

• Preprocess the pattern to create a right hash map

• Idea is that if the character does not occur in the pattern we 
can skip the entire pattern (we return -1 if the entry in the 
map is null)

• The larger the value for P[j] in the right hash map (the closer 
this character is to the end of P), the less we can skip

// position of rightmost occurrence of c in the pattern
right = new HashMap<Character, Integer>(); 
for (int i=P.length()-1; i>=0; i--) {
   if (right.get(P.charAt(i))==null)
       right.put(P.charAt(i), i);
} 



Boyer Moore: code

int skip;
for (int i = 0; i <= N - M; i += skip) {
 skip = 0;
       for (int j = M-1; j >= 0; j--) {
           if (P.charAt(j) != T.charAt(i+j)) {
               if (right.get(T.charAt(i))==null) 
       skip = j - (-1);
               else
                    skip = Math.max(1, j - right.get(T.charAt(i)));                
                    break;               
  break;
            }
        }

        if (skip == 0) return i;    // found
  }
  return -1;                       // not found

Note that when j = M-1, 
and X is not in the 
pattern then the skip 
value is ((M-1) - (-1)) = 
M → this is the bad 
character rule



Worst-case input

T = AAAAAAAAAAAAAAAAAAAAAAAAAAA

P = BAAAAA

• P must be completely compared (M char comps, right to left) 
before we mismatch and skip

• So how far do we skip?

  In this case:
• j = 0 (we have moved all the way to the left)
• right['A'] = 5 
• This would give a skip of 0-5 (!!!)

• So the actual skip would be 1 – as in the naïve algorithm 
(this is why we have 1 as a second option) 

skip = Math.max(1, j - right.get(T.charAt(i))); 



Running time

T = AAAAAAAAAAAAAAAAAAAAAAAAAAA

   P = BAAAAA

•We will then do the same number of comparisons again – 
aligning pattern to stat at every position in T

• Thus we do M comps, move down 1, M comps, move down 
1, etc.

• This gives a total of (N-M+1)(M) comparisons or O(MN) 

• This is why the actual BM algorithm has another heuristic:
• Good character rule

• The second heuristic guarantees that the run-time will never 
be more than O(N)



Pattern matching algorithms

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp



New idea: hashing

• Consider the polynomial hashing scheme we discussed for 
strings:

hash(s) = s[0]*An-1 + s[1]*An-2 + … + s[n-2]*A1 + s[n-1]*A0

where A is some prime (31 in JDK)

hash("CAT") = 67*312 + 65*321 + 84 = 66551

• To search for "CAT" we can thus "hash" all 3-char substrings 
of our text and test the values for equality

•We need to be able to incrementally update a hash value 
and not recompute it for M characters, because in this case 
it will be O(NM)



Hashing of a sliding substring

• Idea is that with each mismatch we "remove" the 
polynomial part of the leftmost character from the hash 
value computation and we add the next character from the 
text to the hash value



Explanation using decimal digits: 
polynomial of base 10

• P: 1213

• h(P) = 1*103 + 2 * 102 + 1 *101 +3*100

• T: 3526142312136

• h(T[0…3]) = 3*103 + 5 * 102 + 2 *101 +6*100

• T: 3526142312136

• h (T[1…4])

•We should start with h(T[0…3]) and:
• Remove leading digit 3*103

•Multiply the result by 10 – moving into the next register
• Add trailing digit 1*100

O(M): we do it only 
once – for the first 
substring of T

That is a 
constant-time 
computation



Idea of a rolling hash (digits example)

• P: 1 2 1 3 

• T: 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(P) = 1*103 + 2*102 + 1*101 +3*100 = 1213

• 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(3526) = 3*103 + 5*102 + 2*101 +6*100 = 3526 ≠ 1213

• 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(5261) = (h(3526) – 3*103)*10 + 1*100 = 5260 + 1 = 5261 ≠ 1213

• 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(2614) = (h(5261) – 5*103)*10 + 4*100 = 2610 + 4 = 2614 ≠ 1213

O(M)

O(1)

O(1)

O(M)

Hashing pattern P

Hashing first substring of T



The same thing with each character: 
but the base of polynomial is some prime

long txtHash = hash(T, M);  // hash first M characters of text

for (int i = M; i < N; i++) {
    txtHash -= firstCoef*T.charAt(i-M);  //Remove leading digit
    txtHash = txtHash*polBase;           //move register
    txtHash += T.charAt(i);              //add trailing digit

    // check if that actually was a match
int startInd = i - M + 1;

    if ((patHash == txtHash) && check(T, startInd))
        return startInd;
}

// no match
return -1;



Rabin Karp: notes

• We are moving from left to right in the text

• We do not compare characters: we compare hash values of each 
substring of the text T of length M with the hash of a pattern P

• We only compute the full hash once: for T[0…M-1]

• After that we update the hash value of the next substring in time 
O(1)

• In the robust implementations of the algorithm we use modulo of 
hashing results to avoid integer overflow

• That is why the simplified version presented in demo can only 
work for fairly short patterns 



Where there is a hash – there are collisions

• So what happens if two different substrings hash to the 
same hash code? 

• The hash values would match but in fact the strings would 
not! They could be not even similar!

• To make sure that we found the pattern, if hash values 
match – we could verify the result with a char-by-char test



Two versions of the Rabin Karp algorithm

• If we don’t check for collisions:
• Algorithm is guaranteed to run in O(N) time
• Algorithm is highly likely to be correct
• But it could also produce false positive if a collision occurs

Text calls this a Monte Carlo version

Recap:
Monte Carlo algorithms: produce results that 
are not always fully correct (close to being 
correct with some probability), but the runtime 
is guaranteed



Two versions of the Rabin Karp algorithm

• If we do check for collisions:
• Algorithm is guaranteed to be correct
• Algorithm is highly likely to run in O(N) time
•What would worst case be and why?

• Text calls this the Las Vegas version

Recap: 
Las Vegas algorithms always produce the 
correct result but they guarantee the 
runtime only with some probability

O(MN)



Pattern matching algorithms: runtime

• Brute force (naïve algorithm):  

• O(MN) – but rarely reaches this in practice

• KMP: 

• O(N) – always

• Boyer-Moore: 

• Can be sublinear < N

• With only a bad suffix rule: O(MN)

• With the good suffix rule: guarantees O(N) 

• Rabin-Karp: 

• O(N) expected

• O(MN) worst case (Las Vegas version, very unlikely)
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