
Pattern matching:
part deux

Lecture 23

Shifting heuristics

• In the naive algorithm, we check the occurrence of pattern P
in text T, each time aligning the start of P with the next
character in T

• In the KMP algorithm we speed up the search by using some
information about pattern P and the characters of T that
were already aligned with P: This allows us to shift the start
of P by more than one position in T

New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• As before, we first align the position 0 of the pattern with position
0 of the text

• However, we compare characters of P starting from the last
position of P, position M - 1 (where M is the length of P)

So we are moving the start position i in T
from left to right, but we are comparing
the characters of P with characters of T
from right to left.

New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we first compare C and B, we learn two things:
• C does not match B
• C does not appear anywhere in the pattern

Should we continue comparing T[2] and P[2]?

New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we first compare C and B, we learn two things:
• C does not match B
• C does not appear anywhere in the pattern

• Where should we position the pattern for the next round of
comparisons?

• Which positions in T and P will we compare next?

New idea

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

With one mismatch we shifted down the entire length of the
pattern (M positions)!

• Some characters of T will be not compared at all!
• This could be a sublinear search! (< N comparisons)

M positions forward

Pattern matching algorithms

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

Boyer Moore algorithm

✓Bad character rule

• Bad suffix rule

• Good suffix rule (outside the scope of this course)

Bad suffix rule

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Now the mismatched character A DOES appear in the pattern
Still no need to compare the rest of characters

Bad suffix rule

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A B A B

0 1 2 3

A B A B

0 1 2 3

1

2

How far should we slide the pattern for the next comparison?
1 or 2?

Bad suffix rule

A B A B

0 1 2 3

A B A C D A B A A A B A B A B A C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A B A B

0 1 2 3
1

• When shifting the pattern to the right, we must make sure not to
go farther than where the mismatched character A is first seen
(from the right) in P

• For each letter of the alphabet we need to know its last
occurrence in P

Pattern preprocessing for the BM algorithm

• How can we figure out how far to skip?

• Preprocess the pattern to create a right hash map

• Idea is that if the character does not occur in the pattern we
can skip the entire pattern (we return -1 if the entry in the
map is null)

• The larger the value for P[j] in the right hash map (the closer
this character is to the end of P), the less we can skip

// position of rightmost occurrence of c in the pattern
right = new HashMap<Character, Integer>();
for (int i=P.length()-1; i>=0; i--) {
 if (right.get(P.charAt(i))==null)
 right.put(P.charAt(i), i);
}

Boyer Moore: code

int skip;
for (int i = 0; i <= N - M; i += skip) {
 skip = 0;
 for (int j = M-1; j >= 0; j--) {
 if (P.charAt(j) != T.charAt(i+j)) {
 if (right.get(T.charAt(i))==null)
 skip = j - (-1);
 else
 skip = Math.max(1, j - right.get(T.charAt(i)));
 break;
 break;
 }
 }

 if (skip == 0) return i; // found
 }
 return -1; // not found

Note that when j = M-1,
and X is not in the
pattern then the skip
value is ((M-1) - (-1)) =
M → this is the bad
character rule

Worst-case input

T = AAAAAAAAAAAAAAAAAAAAAAAAAAA

P = BAAAAA

• P must be completely compared (M char comps, right to left)
before we mismatch and skip

• So how far do we skip?

 In this case:
• j = 0 (we have moved all the way to the left)
• right['A'] = 5
• This would give a skip of 0-5 (!!!)

• So the actual skip would be 1 – as in the naïve algorithm
(this is why we have 1 as a second option)

skip = Math.max(1, j - right.get(T.charAt(i)));

Running time

T = AAAAAAAAAAAAAAAAAAAAAAAAAAA

 P = BAAAAA

•We will then do the same number of comparisons again –
aligning pattern to stat at every position in T

• Thus we do M comps, move down 1, M comps, move down
1, etc.

• This gives a total of (N-M+1)(M) comparisons or O(MN)

• This is why the actual BM algorithm has another heuristic:
• Good character rule

• The second heuristic guarantees that the run-time will never
be more than O(N)

Pattern matching algorithms

‣ brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp

New idea: hashing

• Consider the polynomial hashing scheme we discussed for
strings:

hash(s) = s[0]*An-1 + s[1]*An-2 + … + s[n-2]*A1 + s[n-1]*A0

where A is some prime (31 in JDK)

hash("CAT") = 67*312 + 65*321 + 84 = 66551

• To search for "CAT" we can thus "hash" all 3-char substrings
of our text and test the values for equality

•We need to be able to incrementally update a hash value
and not recompute it for M characters, because in this case
it will be O(NM)

Hashing of a sliding substring

• Idea is that with each mismatch we "remove" the
polynomial part of the leftmost character from the hash
value computation and we add the next character from the
text to the hash value

Explanation using decimal digits:
polynomial of base 10

• P: 1213

• h(P) = 1*103 + 2 * 102 + 1 *101 +3*100

• T: 3526142312136

• h(T[0…3]) = 3*103 + 5 * 102 + 2 *101 +6*100

• T: 3526142312136

• h (T[1…4])

•We should start with h(T[0…3]) and:
• Remove leading digit 3*103

•Multiply the result by 10 – moving into the next register
• Add trailing digit 1*100

O(M): we do it only
once – for the first
substring of T

That is a
constant-time
computation

Idea of a rolling hash (digits example)

• P: 1 2 1 3

• T: 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(P) = 1*103 + 2*102 + 1*101 +3*100 = 1213

• 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(3526) = 3*103 + 5*102 + 2*101 +6*100 = 3526 ≠ 1213

• 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(5261) = (h(3526) – 3*103)*10 + 1*100 = 5260 + 1 = 5261 ≠ 1213

• 3 5 2 6 1 4 2 3 1 2 1 3 6

• h(2614) = (h(5261) – 5*103)*10 + 4*100 = 2610 + 4 = 2614 ≠ 1213

O(M)

O(1)

O(1)

O(M)

Hashing pattern P

Hashing first substring of T

The same thing with each character:
but the base of polynomial is some prime

long txtHash = hash(T, M); // hash first M characters of text

for (int i = M; i < N; i++) {
 txtHash -= firstCoef*T.charAt(i-M); //Remove leading digit
 txtHash = txtHash*polBase; //move register
 txtHash += T.charAt(i); //add trailing digit

 // check if that actually was a match
int startInd = i - M + 1;

 if ((patHash == txtHash) && check(T, startInd))
 return startInd;
}

// no match
return -1;

Rabin Karp: notes

• We are moving from left to right in the text

• We do not compare characters: we compare hash values of each
substring of the text T of length M with the hash of a pattern P

• We only compute the full hash once: for T[0…M-1]

• After that we update the hash value of the next substring in time
O(1)

• In the robust implementations of the algorithm we use modulo of
hashing results to avoid integer overflow

• That is why the simplified version presented in demo can only
work for fairly short patterns

Where there is a hash – there are collisions

• So what happens if two different substrings hash to the
same hash code?

• The hash values would match but in fact the strings would
not! They could be not even similar!

• To make sure that we found the pattern, if hash values
match – we could verify the result with a char-by-char test

Two versions of the Rabin Karp algorithm

• If we don’t check for collisions:
• Algorithm is guaranteed to run in O(N) time
• Algorithm is highly likely to be correct
• But it could also produce false positive if a collision occurs

Text calls this a Monte Carlo version

Recap:
Monte Carlo algorithms: produce results that
are not always fully correct (close to being
correct with some probability), but the runtime
is guaranteed

Two versions of the Rabin Karp algorithm

• If we do check for collisions:
• Algorithm is guaranteed to be correct
• Algorithm is highly likely to run in O(N) time
•What would worst case be and why?

• Text calls this the Las Vegas version

Recap:
Las Vegas algorithms always produce the
correct result but they guarantee the
runtime only with some probability

O(MN)

Pattern matching algorithms: runtime

• Brute force (naïve algorithm):

• O(MN) – but rarely reaches this in practice

• KMP:

• O(N) – always

• Boyer-Moore:

• Can be sublinear < N

• With only a bad suffix rule: O(MN)

• With the good suffix rule: guarantees O(N)

• Rabin-Karp:

• O(N) expected

• O(MN) worst case (Las Vegas version, very unlikely)

	Slide 1: Pattern matching: part deux
	Slide 2: Shifting heuristics
	Slide 3: New idea
	Slide 4: New idea
	Slide 5: New idea
	Slide 6: New idea
	Slide 7: Pattern matching algorithms
	Slide 8: Boyer Moore algorithm
	Slide 9: Bad suffix rule
	Slide 10: Bad suffix rule
	Slide 11: Bad suffix rule
	Slide 12: Pattern preprocessing for the BM algorithm
	Slide 13: Boyer Moore: code
	Slide 14: Worst-case input
	Slide 15: Running time
	Slide 16: Pattern matching algorithms
	Slide 17: New idea: hashing
	Slide 18: Hashing of a sliding substring
	Slide 19: Explanation using decimal digits: polynomial of base 10
	Slide 20: Idea of a rolling hash (digits example)
	Slide 21: The same thing with each character: but the base of polynomial is some prime
	Slide 22: Rabin Karp: notes
	Slide 23: Where there is a hash – there are collisions
	Slide 24: Two versions of the Rabin Karp algorithm
	Slide 25: Two versions of the Rabin Karp algorithm
	Slide 26: Pattern matching algorithms: runtime

