
Recursive algorithms: 
optimizations

Lecture 21



Two optimization techniques:

• Recursion with memoization

• Recursion with backtracking



Memoization



Recall: When recursion feels natural 

• Many problems are already defined as recursive problems

• Recursion is a natural solution to these problems

Recursive algorithms are particularly appropriate when the 
underlying problem or the data to be treated are defined in 
recursive terms

Fn = n∗Fn-1



Fn = 

0,  if n=0

1,  if n=1 
  
 

Fn−1 +  Fn−2,  if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Fn = 
1,  if n = 0 or n=1

n*Fn−1, if n > 1

1, 1, 2, 6, 24, 120… 

Note how the function F(n) is defined through F(n-1)

Recurrence relations

Factorial Fibonacci



Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34… 

Golden ratio

Fn = 

0,  if n=0

1,  if n=1 
  
 

Fn−1 +  Fn−2,  if n > 1



Fibonacci rabbits

pair 

1

1 month

Leonardo 
Fibonacci 

c1175-1250



Fibonacci rabbits

pair 

1

1 month

2 months
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Fibonacci rabbits
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1

1 month

2 months
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2

3 months
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4 months



Fibonacci rabbits
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1

1 month

2 months

pair 

2

3 months
pair 

3

4 months
pair 

4

pair 

5

5 months



Fibonacci rabbits

pair 

1

1 month

2 months

pair 

2

3 months
pair 

3

4 months
pair 

4

pair 

5

5 months

pair 

6

pair 

7

pair 
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Proof: By induction
Base case: n = 6, 7 (by direct computation).  

Inductive step: 

Assume that it is true for Fn−1:  Fn−1 >=2(n-1)/2.

Let’s show that it is true for Fn 

Fn = Fn−1 + Fn−2

≥ 2(n−1)/2 + 2(n−2)/2 ≥ 2 · 2(n−2)/2 = 2n/2

Fibonacci numbers grow exponentially

Fn ≥ 2n/2  for n ≥ 6 

Theorem:
Fn =

F20 = 6765
F50 = 12586269025
F100 = 354224848179261915075
F500 = 1394232245616978801397243828

7040728395007025658769730726 
4108962948325571622863290691 
557658876222521294125

φn – (1 – φ)n

       √5

φ = 1.618034… 

1+ √5
  2

φ =

Lemma
F6 = 8 >= 26/2 = 8

F7 = 13 > 27/2 = 8



Fibonacci numbers grow exponentially

● This recurrence relation defines an exponential growth

Fn = Fn−1 +  Fn−2  



Recursive definition → recursive algorithm

Algorithm Fib_recurs(n)

if n ≤ 1:  return n

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Problem: Compute Fn

Input: integer n >= 0
Output: Fn

What is the running time?

Fn = 

0,  if n=0

1,  if n=1 
  
 

Fn−1 +  Fn−2,  if n > 1



Recursive Fibonacci: running time

Let T (n) denote the count of lines of code  executed by Fib_recurs(n).

if n ≤ 1: T (n) = 2

if n ≥ 2: T (n) = 3 + T (n − 1) + T (n − 2)

T(n) = 
2 if n <= 1
3 + T(n-1) + T(n-2)

Therefore T (n) ≥ Fn

Algorithm Fib_recurs(n)

if n ≤ 1:  

   return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Number of operations
n-th Fibonacci number

Fn = 

0,  if n=0

1,  if n=1 
  
 

Fn−1 +  Fn−2,  if n > 1



Recursive Fibonacci: running time
Let T (n) denote the count of lines of code  executed by Fib_recurs(n).

T(n) = 
2 if n <= 1
3 + T(n-1) + T(n-2)

T (n) ≥ Fn

(1.77 sextillion)
T (100) ≈ 1.77 · 1021

Takes 56,000 years at 1GHz

Algorithm Fib_recurs(n)

if n ≤ 1:  

   return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Running time 𝝮(2n)



Why so slow?

Recursion tree

Note the repeating calls with the same arguments

F6

F5
F4

F4
F3 F3 F2

F3 F2 F2 F1 ...



Recursion or not recursion?

• Such recursive definitions do not guarantee that a recursive 
algorithm is the best way to solve the problem 

• This is especially true when the subproblems overlap and 
we need to call the algorithm with the same arguments 
multiple times.

Recursive algorithms are particularly appropriate when the 
underlying problem or the data to be treated are defined in 
recursive terms

What can we do to fix this recursive algorithm?



Idea: store computed values

• We can store the results of the previous computation of Fi 
at position i of the state array

• When the recursive call is issued to compute fib(i) we first 
check if the answer for this particular i already exists:

• If it does not exist – we compute it and store for 
future use

• If it does exist – we just use it – avoiding multiple 
recursion calls.

• This optimization technique is called memoization

https://en.wikipedia.org/wiki/Memoization


Algorithm Fib_recurs_memo(n, FibArray of size n)

if n ≤ 1:  

   FibArray[n] = n

   return n

else:

if FibArray[n - 1] is null

    FibArray[n - 1]  = Fib_recurs_memo (n - 1)

if FibArray[n -2] is null

    FibArray[n - 2]  = Fib_recurs_memo (n - 2)

return FibArray[n - 1] + FibArray[n - 2] 

Example: memoization

If not yet computed – 

compute and 

remember



Efficient iterative algorithm

Algorithm Fib_list(n)

create an array F [0 . . . n]  

F [0] ← 0

F [1] ← 1

for i from 2 to n:

F [i ] ← F [i − 1] + F [i − 2]

return F [n]

T (n) = 2n + 2

So T (100) = 202

Running time



Backtracking



Exhaustive Search

• Brute-force search or exhaustive search is a very general 
problem-solving technique that systematically generates 
all possible candidates and for each candidate solution 
checks if it satisfies the problem's statement

Examples of exhaustive search

• Finding all divisors of a natural number n

• Generating all possible paths in a maze to find that 
one path that leads from start to exit



Optimization of exhaustive search: 
backtracking

• For some problems we do not actually need to explore 
all possible solutions

• While we are exploring one of the possible solutions we 
might see that this solution is not promising 

• For example when exploring the path in the maze we 
can  hit the dead end: So we undo the progress that we 
made and return to a point in the maze from where we 
can try an alternative path

• This return is called a backtracking



Example 1: solving mazes
The goal is to find a path 

from the start square 

(yellow) to the exit 

square (red)

White cells represent the 

walls, black cells 

represent the passable 

cells

If we take a brute-force 

approach we will try to  

explore all possible 

paths from the current 

cell in hope that one of 

these paths will 

eventually hit the exit

The order of exploration 

is: Start at 12 o’clock 

and go clockwise: 

NESW



Maze solver example:
Recursion with backtracking



Maze solver example:
Recursion with backtracking



Maze solver example:
Recursion with backtracking



Maze solver example:
Recursion with backtracking
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Recursion with backtracking
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Maze solver example:
Recursion with backtracking
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Maze solver example:
Recursion with backtracking



Maze solver example:
Recursion with backtracking



Algorithm findExit(2D array maze, row, col)

if maze[row][col] == EXIT  // found solution
 return true;

// first thing: mark as visited not to go here again
maze[row][col] = VISITED

// try each direction in turn
if findExit (maze, row-1, col) //try north (UP) 
 return true

if findExit (maze, row, col+1) //try east (RIGHT)
 return true

if findExit (maze, row+1, col) //try south (DOWN)
 return true

if findExit (maze, row, col-1) //try west (LEFT)
 return true

// if here - there were no path from this cell
// backtrack to the previous recursion call
return false

We check all 

possible  directions

Each recursive call 

propagates to the 

base case and  

returns a boolean



Why it is easier to do this 
recursively and not iteratively?

• We need to store information about every intersection we 
passed in order to be able to return to it and try an 
unexplored option

• Without recursion, we would need to store / update this 
information ourselves

• This could be done (using our own Stack), but since the 
mechanism is already built into recursive programming, 
why not utilize it?

• With recursion stack when the top frame unloads we 
backtrack precisely to the place from where we left and 
we can continue exploring the intersection



Example 2. The n-Queens Puzzle

• Place n queens on an n×n chessboard so that no 
two queens attack each other by being in the 
same column, row, or diagonal.

• Recall that chess queens can move horizontally, 
vertically or diagonally for multiple spaces

PLAY

https://www.dr-mikes-math-games-for-kids.com/eight-queens-puzzle.html


Observation
• We note that all 

queens must be in 
different rows and 
different columns

• If we consider each 
queen to already 
be placed in one of 
the columns from 
0 to n-1, we only 
need to determine 
the row for each 
queen

• We will do it 
exhaustively trying 
each row in turn 
and checking the 
result

0 1 2 3 4 5 6 7

0 Q

1 Q

2 Q

3 Q

4 Q

5

6

7



// BASE CASE
// we are at the last column 
if col == board[0].length - 1 // this is the last queen
 if underThreat (board, row, col) // we placed it!
  board[row][col] = 1
  return true

// try all different rows 
// until we find compatible with previous placings
for i from 0 to board.length - 1
 if !underThreat (board, i, col) 
  board[i][col] = 1  // place queen here temporarily
   // and check next col until the end ...
  if !findRow (board, row, col+1);
   board[i][col] = 0 //undo queen placement
  else
   return true // queen stays in row i

// checked all the rows and cant place in any of them
// we need to undo the placement in the previous column
return false

Algorithm findRow(2D array board, row, col)

We check all 

possible  rows
Each recursive call 

propagates to the 

base case and  

returns a boolean



Visualization: 8-queens
• The call at column 

5 would try all rows 
and fail, 
backtracking to 
column 4

• At column 4 we 
would move the 
queen down to the 
next legal row (7) 
and try again

• We try column 5 
again but it fails 
again

• We backtrack to 4 
and then to 3 
(since 4 was at row 
7)

• We move queen in 
col 3 to row 6 and 
move forward again

0 1 2 3 4 5 6 7

0 Q

1

2 Q

3

4 Q

5

6

7

Q

Q

Q

Q



N-Queens optimization
READING LINK

https://drive.google.com/file/d/1z6f2Gdk1FpvalwhK8hGumdFxu8mZA1z6/view?usp=sharing
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