
Recursive algorithms:
optimizations

Lecture 21

Two optimization techniques:

• Recursion with memoization

• Recursion with backtracking

Memoization

Recall: When recursion feels natural

• Many problems are already defined as recursive problems

• Recursion is a natural solution to these problems

Recursive algorithms are particularly appropriate when the
underlying problem or the data to be treated are defined in
recursive terms

Fn = n∗Fn-1

Fn =

0, if n=0

1, if n=1

Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Fn =
1, if n = 0 or n=1

n*Fn−1, if n > 1

1, 1, 2, 6, 24, 120…

Note how the function F(n) is defined through F(n-1)

Recurrence relations

Factorial Fibonacci

Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34…

Golden ratio

Fn =

0, if n=0

1, if n=1

Fn−1 + Fn−2, if n > 1

Fibonacci rabbits

pair

1

1 month

Leonardo
Fibonacci

c1175-1250

Fibonacci rabbits

pair

1

1 month

2 months

Fibonacci rabbits

pair

1

1 month

2 months

pair

2

3 months

Fibonacci rabbits

pair

1

1 month

2 months

pair

2

3 months
pair

3

4 months

Fibonacci rabbits

pair

1

1 month

2 months

pair

2

3 months
pair

3

4 months
pair

4

pair

5

5 months

Fibonacci rabbits

pair

1

1 month

2 months

pair

2

3 months
pair

3

4 months
pair

4

pair

5

5 months

pair

6

pair

7

pair

8

Proof: By induction
Base case: n = 6, 7 (by direct computation).

Inductive step:

Assume that it is true for Fn−1: Fn−1 >=2(n-1)/2.

Let’s show that it is true for Fn

Fn = Fn−1 + Fn−2

≥ 2(n−1)/2 + 2(n−2)/2 ≥ 2 · 2(n−2)/2 = 2n/2

Fibonacci numbers grow exponentially

Fn ≥ 2n/2 for n ≥ 6

Theorem:
Fn =

F20 = 6765
F50 = 12586269025
F100 = 354224848179261915075
F500 = 1394232245616978801397243828

7040728395007025658769730726
4108962948325571622863290691
557658876222521294125

φn – (1 – φ)n

 √5

φ = 1.618034…

1+ √5
 2

φ =

Lemma
F6 = 8 >= 26/2 = 8

F7 = 13 > 27/2 = 8

Fibonacci numbers grow exponentially

● This recurrence relation defines an exponential growth

Fn = Fn−1 + Fn−2

Recursive definition → recursive algorithm

Algorithm Fib_recurs(n)

if n ≤ 1: return n

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Problem: Compute Fn

Input: integer n >= 0
Output: Fn

What is the running time?

Fn =

0, if n=0

1, if n=1

Fn−1 + Fn−2, if n > 1

Recursive Fibonacci: running time

Let T (n) denote the count of lines of code executed by Fib_recurs(n).

if n ≤ 1: T (n) = 2

if n ≥ 2: T (n) = 3 + T (n − 1) + T (n − 2)

T(n) =
2 if n <= 1
3 + T(n-1) + T(n-2)

Therefore T (n) ≥ Fn

Algorithm Fib_recurs(n)

if n ≤ 1:

 return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Number of operations
n-th Fibonacci number

Fn =

0, if n=0

1, if n=1

Fn−1 + Fn−2, if n > 1

Recursive Fibonacci: running time
Let T (n) denote the count of lines of code executed by Fib_recurs(n).

T(n) =
2 if n <= 1
3 + T(n-1) + T(n-2)

T (n) ≥ Fn

(1.77 sextillion)
T (100) ≈ 1.77 · 1021

Takes 56,000 years at 1GHz

Algorithm Fib_recurs(n)

if n ≤ 1:

 return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Running time 𝝮(2n)

Why so slow?

Recursion tree

Note the repeating calls with the same arguments

F6

F5
F4

F4
F3 F3 F2

F3 F2 F2 F1 ...

Recursion or not recursion?

• Such recursive definitions do not guarantee that a recursive
algorithm is the best way to solve the problem

• This is especially true when the subproblems overlap and
we need to call the algorithm with the same arguments
multiple times.

Recursive algorithms are particularly appropriate when the
underlying problem or the data to be treated are defined in
recursive terms

What can we do to fix this recursive algorithm?

Idea: store computed values

• We can store the results of the previous computation of Fi
at position i of the state array

• When the recursive call is issued to compute fib(i) we first
check if the answer for this particular i already exists:

• If it does not exist – we compute it and store for
future use

• If it does exist – we just use it – avoiding multiple
recursion calls.

• This optimization technique is called memoization

https://en.wikipedia.org/wiki/Memoization

Algorithm Fib_recurs_memo(n, FibArray of size n)

if n ≤ 1:

 FibArray[n] = n

 return n

else:

if FibArray[n - 1] is null

 FibArray[n - 1] = Fib_recurs_memo (n - 1)

if FibArray[n -2] is null

 FibArray[n - 2] = Fib_recurs_memo (n - 2)

return FibArray[n - 1] + FibArray[n - 2]

Example: memoization

If not yet computed –

compute and

remember

Efficient iterative algorithm

Algorithm Fib_list(n)

create an array F [0 . . . n]

F [0] ← 0

F [1] ← 1

for i from 2 to n:

F [i] ← F [i − 1] + F [i − 2]

return F [n]

T (n) = 2n + 2

So T (100) = 202

Running time

Backtracking

Exhaustive Search

• Brute-force search or exhaustive search is a very general
problem-solving technique that systematically generates
all possible candidates and for each candidate solution
checks if it satisfies the problem's statement

Examples of exhaustive search

• Finding all divisors of a natural number n

• Generating all possible paths in a maze to find that
one path that leads from start to exit

Optimization of exhaustive search:
backtracking

• For some problems we do not actually need to explore
all possible solutions

• While we are exploring one of the possible solutions we
might see that this solution is not promising

• For example when exploring the path in the maze we
can hit the dead end: So we undo the progress that we
made and return to a point in the maze from where we
can try an alternative path

• This return is called a backtracking

Example 1: solving mazes
The goal is to find a path

from the start square

(yellow) to the exit

square (red)

White cells represent the

walls, black cells

represent the passable

cells

If we take a brute-force

approach we will try to

explore all possible

paths from the current

cell in hope that one of

these paths will

eventually hit the exit

The order of exploration

is: Start at 12 o’clock

and go clockwise:

NESW

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Maze solver example:
Recursion with backtracking

Algorithm findExit(2D array maze, row, col)

if maze[row][col] == EXIT // found solution
 return true;

// first thing: mark as visited not to go here again
maze[row][col] = VISITED

// try each direction in turn
if findExit (maze, row-1, col) //try north (UP)
 return true

if findExit (maze, row, col+1) //try east (RIGHT)
 return true

if findExit (maze, row+1, col) //try south (DOWN)
 return true

if findExit (maze, row, col-1) //try west (LEFT)
 return true

// if here - there were no path from this cell
// backtrack to the previous recursion call
return false

We check all

possible directions

Each recursive call

propagates to the

base case and

returns a boolean

Why it is easier to do this
recursively and not iteratively?

• We need to store information about every intersection we
passed in order to be able to return to it and try an
unexplored option

• Without recursion, we would need to store / update this
information ourselves

• This could be done (using our own Stack), but since the
mechanism is already built into recursive programming,
why not utilize it?

• With recursion stack when the top frame unloads we
backtrack precisely to the place from where we left and
we can continue exploring the intersection

Example 2. The n-Queens Puzzle

• Place n queens on an n×n chessboard so that no
two queens attack each other by being in the
same column, row, or diagonal.

• Recall that chess queens can move horizontally,
vertically or diagonally for multiple spaces

PLAY

https://www.dr-mikes-math-games-for-kids.com/eight-queens-puzzle.html

Observation
• We note that all

queens must be in
different rows and
different columns

• If we consider each
queen to already
be placed in one of
the columns from
0 to n-1, we only
need to determine
the row for each
queen

• We will do it
exhaustively trying
each row in turn
and checking the
result

0 1 2 3 4 5 6 7

0 Q

1 Q

2 Q

3 Q

4 Q

5

6

7

// BASE CASE
// we are at the last column
if col == board[0].length - 1 // this is the last queen
 if underThreat (board, row, col) // we placed it!
 board[row][col] = 1
 return true

// try all different rows
// until we find compatible with previous placings
for i from 0 to board.length - 1
 if !underThreat (board, i, col)
 board[i][col] = 1 // place queen here temporarily
 // and check next col until the end ...
 if !findRow (board, row, col+1);
 board[i][col] = 0 //undo queen placement
 else
 return true // queen stays in row i

// checked all the rows and cant place in any of them
// we need to undo the placement in the previous column
return false

Algorithm findRow(2D array board, row, col)

We check all

possible rows
Each recursive call

propagates to the

base case and

returns a boolean

Visualization: 8-queens
• The call at column

5 would try all rows
and fail,
backtracking to
column 4

• At column 4 we
would move the
queen down to the
next legal row (7)
and try again

• We try column 5
again but it fails
again

• We backtrack to 4
and then to 3
(since 4 was at row
7)

• We move queen in
col 3 to row 6 and
move forward again

0 1 2 3 4 5 6 7

0 Q

1

2 Q

3

4 Q

5

6

7

Q

Q

Q

Q

N-Queens optimization
READING LINK

https://drive.google.com/file/d/1z6f2Gdk1FpvalwhK8hGumdFxu8mZA1z6/view?usp=sharing

	Slide 1: Recursive algorithms: optimizations
	Slide 2: Two optimization techniques:
	Slide 3: Memoization
	Slide 4: Recall: When recursion feels natural
	Slide 5: Recurrence relations
	Slide 6: Fibonacci numbers
	Slide 7: Fibonacci rabbits
	Slide 8: Fibonacci rabbits
	Slide 9: Fibonacci rabbits
	Slide 10: Fibonacci rabbits
	Slide 11: Fibonacci rabbits
	Slide 12: Fibonacci rabbits
	Slide 13: Fibonacci numbers grow exponentially
	Slide 14: Fibonacci numbers grow exponentially
	Slide 16: Recursive definition → recursive algorithm
	Slide 17: Recursive Fibonacci: running time
	Slide 18: Recursive Fibonacci: running time
	Slide 19: Why so slow?
	Slide 20: Recursion or not recursion?
	Slide 21: Idea: store computed values
	Slide 22: Example: memoization
	Slide 23: Efficient iterative algorithm
	Slide 24: Backtracking
	Slide 25: Exhaustive Search
	Slide 26: Optimization of exhaustive search: backtracking
	Slide 27: Example 1: solving mazes
	Slide 28: Maze solver example: Recursion with backtracking
	Slide 29: Maze solver example: Recursion with backtracking
	Slide 30: Maze solver example: Recursion with backtracking
	Slide 31: Maze solver example: Recursion with backtracking
	Slide 32: Maze solver example: Recursion with backtracking
	Slide 33: Maze solver example: Recursion with backtracking
	Slide 34: Maze solver example: Recursion with backtracking
	Slide 35: Maze solver example: Recursion with backtracking
	Slide 36: Maze solver example: Recursion with backtracking
	Slide 37: Maze solver example: Recursion with backtracking
	Slide 38: Maze solver example: Recursion with backtracking
	Slide 39: Maze solver example: Recursion with backtracking
	Slide 40: Maze solver example: Recursion with backtracking
	Slide 41: Maze solver example: Recursion with backtracking
	Slide 42: Maze solver example: Recursion with backtracking
	Slide 43: Maze solver example: Recursion with backtracking
	Slide 44: Maze solver example: Recursion with backtracking
	Slide 45: Maze solver example: Recursion with backtracking
	Slide 46: Maze solver example: Recursion with backtracking
	Slide 47
	Slide 48: Why it is easier to do this recursively and not iteratively?
	Slide 49: Example 2. The n-Queens Puzzle
	Slide 50: Observation
	Slide 51
	Slide 52: Visualization: 8-queens
	Slide 53: N-Queens optimization

