
Designing new Data Types:
Composition

Lecture 2

CS0445: Algorithms and Data Structures 1

Creating New Types (Classes)

• Java already has many types (classes) – each designed to perform a
specific task

• See API

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/module-summary.html

• However for each new task we might need a new class

• Rarely we build the entire new class from scratch: we reuse other
classes

• There are two primary techniques for doing this

• Composition (Aggregation)

• Inheritance

2

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/module-summary.html

Composition

• Instance variables can be of any type: they can also be reference
variables which refer to an object of a custom type (class)

• This way we can construct complex objects which contain simpler
objects inside them

• The method of constructing a program by incorporating smaller
objects inside a larger one is called composition

• This is the most useful and widely used approach in Object-
Oriented Programming

• New class has no special access to the instance variables/methods
of included objects

• Methods in new class are often implemented by utilizing methods
from the instance variable objects

3

public class Hospital {
 private String name;
 private Patient[] patients;
 int numPatients;
 int capacity;

 public Hospital(String name, int capacity) {
 this.name = name;
 patients = new Patient[capacity];
 this.capacity = capacity;
 }

public void addPatient(Patient p) {
 if (this.numPatients < this.capacity)
 this.patients[numPatients++] = p;
 else
 System.out.println("…");
 }

 public void cureAll() {
 for(int i=0; i<numPatients; i++)
 patients[i].cure();
 }

Example: Hospital class

Patient class is defined in a separate file, that
can be written by another programmer

Patients know how to
cure themselves

Advantages of Composition: abstraction

• While combining elementary objects we ensure that we expose only
important properties and capabilities of these objects (contract, public
interface, abstract away details)

• We can divide work among many programmers: each programmer
can concentrate on correct implementation of their own small piece

Car

model: String
engine: Engine
door: Door
wheels: Wheel []

move()

Engine

Door

Wheels

People who build engines
do not have to know how
to make wheels

5

"Has a" relationship between new class and included classes

Mutable and Immutable Objects

• Many Java classes contain mutator methods: these are methods
that allow us to change the property of an object

• Objects that can be changed via mutators are said to be mutable

• Ex: StringBuilder

append() method adds characters to the current
StringBuilder

• Ex: ArrayList

add(), remove(), set()

• Some classes do not contain mutator methods: objects from these
classes are said to be immutable

• Ex: String

• Cannot alter the string once the object is created

• Ex: wrapper objects (Integer, Float, etc)

• Allow accessors but no mutators
6

Complications with Immutable Objects

• If we cannot modify the properties of an object we are forced to
create new objects to solve a particular problem

• Ex: Concatenating Strings
 String S1 = "Hello ";

 S1 = S1 + "there";

• We must create and assign a new object rather than just
append the string to the existing object

• If done repeatedly this can cause a lot of overhead

7

Example: Mutable string?

public class MuString {

 private String name;

 public MuString(String s, int i) {

 name = new String(s);

 }

 public void setCharAt(int i, char c) {

 StringBuilder b = new StringBuilder(name);

 b.setCharAt(i, c);

 name = b.toString();

 }

}

8

We cannot mutate the inner

representation of the String, so we must

change it in a rather convoluted way

Complications with Mutable Objects

• Consider a new class that is a subclass of an ArrayList

• Let’s say we store mutable objects inside it

• When we add an object to a collection, it doesn't mean we give up
outside access to the object

• Ex. As in ArrayList we can call get(i) and get the element at
position i into a reference variable

• If this object happened to be mutable, we can alter the object
outside of our class, and we could destroy a desired property of
the collection

9

Example:
Sorted collection of mutable objects

• Assume our new subclass of ArrayList is a SortedArrayList
intended to keep the data sorted

• The elements of an array are mutable: ex. StringBuilder

• We can get access to a StringBuilder at position i and modify it
outside the SortedArrayList class

• This could make the ordering invalid, but our class would not be
aware of the change

10

Solution: use copies

• What to do? How to prevent the change outside of our class? How
to maintain order?

• We could use only immutable objects for the SortedArryList

• Or we can put copies of our original objects into the collection

• And to be very safe – our accessors should themselves return
copies of the objects rather than references to the originals

And here we face another challenge:

• How to make a copy of an object?

11

Copying Objects in Java

• Syntactically, Java objects can be copied using:

1. clone() method

2. copy constructor

12

1.Clone()

• clone() is defined in class Object, so it will work for all Java classes

• By default it will only copy the values of instance variables

• This works well for primitives, but as you are aware – when we
copy reference variables they will contain the same address value
in both copies and thus they will refer to the same object!

• So if you want to also create copies of nested objects, you must
reimplement clone for new classes to work properly

• clone() is often already defined for Java arrays, StringBuilders (and
some other classes), so we can use it for them without overriding

13

A a = new A();

A a1 = a.clone();

2. Copy constructor

• We can implement a copy constructor for any new Java class that
we write

• Some predefined classes already have them

String s = new String("hello");

String t = new String(s);

14

A a = new A();

A a1 = new A(a);

Shallow vs. Deep Copy

• Recall that many classes are built using composition

• Thus an object may contain references to other objects

• These can in turn contain references to other objects

• If we copy an object, what do we do about any references within
that object?

• In a shallow copy, we just copy those references to the new
object: as a result, both copies of the object refer to the same
"nested" objects

• In a deep copy, all nested objects must also be copied

15

Example 1: Shallow Copy

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // shallow copy

 public SBArray(SBArray old)

 {

 A = old.A;

 size = old.size;

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

orig

A
size 2

0

1

2

3

4

One

Two

16

• Copy references from old
object to new object

Example 1: Shallow Copy

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // shallow copy

 public SBArray(SBArray old)

 {

 A = old.A;

 size = old.size;

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray shallow = new SBArray(orig);

orig

shallow

A
size 2

0

1

2

3

4

One

Two

17

• The entire array is shared by
original and copy

A
size 2

Example 1: Shallow Copy

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // shallow copy

 public SBArray(SBArray old)

 {

 A = old.A;

 size = old.size;

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray shallow = new SBArray(orig);

orig.set(0, new StringBuilder("Three"));

orig

shallow

A
size 2

0

1

2

3

4

Two

Three

18

A
size 2

Example 1: Shallow Copy

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // shallow copy

 public SBArray(SBArray old)

 {

 A = old.A;

 size = old.size;

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray shallow = new SBArray(orig);

orig.set(0, new StringBuilder("Three"));

shallow.get(1).append("ish");

orig

shallow

A
size 2

0

1

2

3

4

Twoish

Three

19

A
size 2

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deeper copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder

 [old.A.length];

 size = old.size;

 for (int i=0; i<size; i++)

 A[i] = old.A[i];

 }

}

Example 2: Deeper Copy

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

orig
A

size 2
0

1

2

3

4

One

Two

• We made a copy of the array elements
• But the references within both arrays still

point to the identical StringBuilder objects

20

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deeper copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder

 [old.A.length];

 size = old.size;

 for (int i=0; i<size; i++)

 A[i] = old.A[i];

 }

}

Example 2: Deeper Copy

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray deeper = new SBArray(orig);

orig

deeper

A
size 2

0

1

2

3

4

A
size 2

One

Two

0

1

2

3

4

21

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deeper copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder

 [old.A.length];

 size = old.size;

 for (int i=0; i<size; i++)

 A[i] = old.A[i];

 }

}

Example 2: Deeper Copy

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray deeper = new SBArray(orig);

orig.set(0, new StringBuilder("Three"));

orig

deeper

A
size 2

0

1

2

3

4

A
size 2

One

Two

Three

0

1

2

3

4

22

public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deeper copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder

 [old.A.length];

 size = old.size;

 for (int i=0; i<size; i++)

 A[i] = old.A[i];

 }

}

Example 2: Deeper Copy

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray deeper = new SBArray(orig);

orig.set(0, new StringBuilder("Three"));

deeper.get(1).append("ish");

orig

deeper

A
size 2

0

1

2

3

4

A
size 2

One

TwoTwoish

0

1

2

3

4

23

One

Three

Example3: Deep Copy
public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deep copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder[

 old.A.length];

 size = old.size

 for (int i=0; i<size; i++)

 A[i] = new StringBuilder(

 old.A[i]);

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

orig

A
size 2

0

1

2

3

4

One

Two

• We made a copy of the array
• We also created a copy of all the

StringBuilders stored in the array
• Original and copy are completely

separated from each other

24

Example3: Deep Copy
public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deep copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder[

 old.A.length];

 size = old.size

 for (int i=0; i<size; i++)

 A[i] = new StringBuilder(

 old.A[i]);

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray deep = new SBArray(orig);

orig

deep

A
size 2

0

1

2

3

4

A
size 2

One

Two

0

1

2

3

4

One

Two

25

Example3: Deep Copy
public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deep copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder[

 old.A.length];

 size = old.size

 for (int i=0; i<size; i++)

 A[i] = new StringBuilder(

 old.A[i]);

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray deep = new SBArray(orig);

orig.set(0, new StringBuilder("Three"));

orig

deep

A
size 2

0

1

2

3

4

A
size 2

One

Two

0

1

2

3

4

Three

26

Two

Example3: Deep Copy
public class SBArray

{

 private StringBuilder [] A;

 private int size;

 // deep copy

 public SBArray(SBArray old)

 {

 A = new StringBuilder[

 old.A.length];

 size = old.size

 for (int i=0; i<size; i++)

 A[i] = new StringBuilder(

 old.A[i]);

 }

}

SBArray orig = new SBArray(5);

orig.add(new StringBuilder("One"));

orig.add(new StringBuilder("Two"));

SBArray deep = new SBArray(orig);

orig.set(0, new StringBuilder("Three"));

deep.get(1).append("ish");

orig

deep

A
size 2

0

1

2

3

4

A
size 2

Two

0

1

2

3

4

Twoish

27

One

Three

Deep vs. Shallow Copy: summary

• In general, (true) deep copying is more difficult than shallow copying

• We need to follow all references in the original and make copies
for the copy

• This could be several levels deep

• Ex: A linked list

• The linked list object has a reference to front node

• A shallow copy would only copy this single reference

• A deep copy would have to traverse the entire list, copying
each node AND copying the data in each node AND …

• We don't know it is truly deep unless all copies made are deep

• See:

Example2.java

SBArray.java
28

	Slide 1: Designing new Data Types: Composition
	Slide 2: Creating New Types (Classes)
	Slide 3: Composition
	Slide 4: Example: Hospital class
	Slide 5: Advantages of Composition: abstraction
	Slide 6: Mutable and Immutable Objects
	Slide 7: Complications with Immutable Objects
	Slide 8: Example: Mutable string?
	Slide 9: Complications with Mutable Objects
	Slide 10: Example: Sorted collection of mutable objects
	Slide 11: Solution: use copies
	Slide 12: Copying Objects in Java
	Slide 13: 1.Clone()
	Slide 14: 2. Copy constructor
	Slide 15: Shallow vs. Deep Copy
	Slide 16: Example 1: Shallow Copy
	Slide 17: Example 1: Shallow Copy
	Slide 18: Example 1: Shallow Copy
	Slide 19: Example 1: Shallow Copy
	Slide 20: Example 2: Deeper Copy
	Slide 21: Example 2: Deeper Copy
	Slide 22: Example 2: Deeper Copy
	Slide 23: Example 2: Deeper Copy
	Slide 24: Example3: Deep Copy
	Slide 25: Example3: Deep Copy
	Slide 26: Example3: Deep Copy
	Slide 27: Example3: Deep Copy
	Slide 28: Deep vs. Shallow Copy: summary

