
Lower-bound on 

Comparison-Based Sorting

Lecture 19

Can we sort without comparing objects?
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Algorithm mergeSort (A[1...n])

if n = 1:  return A

m ← ⌊n/2⌋

B ← mergeSort(A[1 ... m])

C ← mergeSort(A[m + 1 ... n])

A′ ← merge(B, C )

return A′

The running time of mergeSort(A[1 ... n]) is O(n log n).

Can we do better?



Lower bound 
for Comparison-based sorting

A comparison-based sorting algorithm sorts objects by 
comparing pairs of them.

Example:
Selection sort and merge sort are comparison  based.

Definition



Lemma
Any comparison-based sorting algorithm performs 

Ω(n log n) comparisons in the worst case to sort n objects.

In other words
For any comparison-based sorting algorithm,  there exists 

an input array A[1 . . . n] such that the algorithm 

performs at least Ω(n log n) comparisons to sort A.
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Estimating max leaf depth
● The number of leaves ℓ in the tree must  be n! (the total number of 

permutations of n array elements)

● For the worst-case input the number of comparisons made is equal 

to the maximum depth d of this tree

● The max depth of any node in a binary tree with ℓ leaves is at least 

O(log ℓ): the minimum happens when the binary tree is complete. 

In all other incomplete binary trees the max depth will be > log ℓ.

d ≥ log2 ℓ (or, equivalently, 2d 
≥ ℓ)

● The number of leaves ℓ in our decision tree is n!

● Let’s show that: 

 log2(n!) = Ω(n log n)



Lemma

log2(n!) = Ω(n log n)

Proof

log2(n!) = log2(1 · 2 · · · · · n)

= log2 1 + log2 2 + · · · + log2 n

≥ log2 (n/2)+ · · · + log2 n

≥ (n/2) log2(n/2) = Ω(n log n)



Corollary
Any comparison-based sorting algorithm  

performs (at least) Ω(n log n) comparisons on 

the worst case input of size n.



This running time is optimal if we consider 
sorting based on comparing pairs of 
numbers

Merge Sort
The running time of MergeSort(A[1 . . . n]) is 

O(n log n).



Sorting not based on comparison:  
  can be faster
  

0     1     2     3    4     5     6  7    8    9   10   11

2 3 2 1 3 2 2 3 2 2 2 1A

Example 1: sorting small integers
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Sorting small integers

2 7 3Count
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Non-comparison based sorting?
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Sorting small integers
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Non-comparison based sorting 
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2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1     2     3

Non-comparison based sorting 

1 1 2 2 2 2 2 2 2 3 3 3

we have sorted these numbers  

without actually comparing them!

0     1     2     3    4     5     6  7    8    9   10   11



Count Sort

● Assume that all elements of A[0 . . . N-1] are 
integers from 1 to M.

● By a single scan of the array A, count  the number 

of occurrences of each 1 ≤ k ≤ M  in the array A 

and store it in Count[k].

● Using this information, fill in the sorted array A′.



CountSort(A[0 ... N-1])

Count[1 . . . M ] ← [0, . . . , 0]   # to store counts of A[i]

for i from 0 to N-1:  
 Count[A[i]] ← Count[A[i ]] + 1

# number k appears Count[k] times in A  
Pos[1 . . . M ] ← [0, . . . , 0]
Pos[1] ← 0
for j from 2 to M :

Pos[j ] ← Pos[j − 1] + Count[j − 1]

A’[0 . . . n-1 ] ← [0, . . . , 0]  # to store sorted values of A

# number k will occupy range [Pos[k]...Pos[k + 1] − 1] 
for i from 0 to N-1:

A′[Pos[A[i ]]] ← A[i ]
Pos[A[i ]] ← Pos[A[i ]] + 1



CountSort(A[0 ... n-1])

Count[1 . . . M ] ← [0, . . . , 0]   # to store counts of A[i]

for i from 0 to N-1:  
 Count[A[i]] ← Count[A[i ]] + 1
 …

2 7 3Count

1     2     3

0     1     2     3    4     5     6  7    8    9   10   11

2 3 2 1 3 2 2 3 2 2 2 1A

1 scan of A: O(N)



CountSort(A[0 ... n-1])

…

0 2 9Pos

1     2     3

# number k appears Count[k] times in A  
Pos[1 . . . M ] ← [0, . . . , 0]
Pos[1] ← 0
for j from 2 to M :

Pos[j ] ← Pos[j − 1] + Count[j − 1]

2 7 3Count

1     2     3

1 scan of Count: O(M)



CountSort(A[0 ... n-1])

…

0 2 9Pos

1     2     3

# number k will occupy range [Pos[k]...Pos[k + 1] − 1] 
for i from 0 to N-1:

A′[Pos[A[i ]]] ← A[i ]
Pos[A[i ]] ← Pos[A[i ]] + 1

0     1     2     3    4     5     6  7    8    9   10   11

1 1 2 2 2 2 2 2 2 3 3 3A'

2 3 2 1 3 2 2 3 2 2 2 1A

1 scan of A: O(N)



Lemma

Provided that all elements of A[1 . . . n] are integers 

from 1 to M, countSort(A) sorts A in time O(N + M).

Corollary
If M = O(N), then the running time of Count Sort is O(N).



Non-comparison-based sorting:  

  another approach

  

0       1     2     3         4     5     6         7

beds dust cabs cubs bass abba stud bestA

Example 2: sorting strings

• Consider an array of Strings
• We can use a comparison-based sort to sort these, utilizing 

the compareTo() method of String class



0 1 2 3 4 5 6 7

0 b d c c b a s b

1 e u a u a b t e

2 d s b b s b u s

3 s t s s s a d t

A

Example 2: sorting strings (char arrays)

• What if we think of a String as a char array

• Consider the positions in each String, from rightmost to 

leftmost, and the character value at that position

• Instead of comparing these characters to one another, 

we will use each as an index to a "bin" (actually a 

Queue) of Strings

• We will have an array of Queues indexed on the ASCII 

characters

Position of a 

character

Index in A



Assign to buckets based on A[i][3]

0 1 2 3 4 5 6 7

0 b d c c b a s b

1 e u a u a b t e

2 d s b b s b u s

3 s t s s s a d t

‘a’ abba

‘b’

‘c’

‘d’ stud

‘e’

…

‘s’ beds, cabs, cubs, bass, 

‘t’ dust, best

‘u’

…

Buckets indexed by each 

character value
A

Each bucket 

is a Queue 

of Strings



Transfer back to A in this order

0 1 2 3 4 5 6 7

0 a s b c c b d b

1 b t e a u a u e

2 b u d b b s s s

3 a d s s s s t t

‘a’ abba

‘b’

‘c’

‘d’ stud

‘e’

…

‘s’ beds, cabs, cubs, bass, 

‘t’ dust, best

‘u’

…

A

We copy the data in order from 

the Queues back into the array

Buckets indexed by each 

character value



Assign to buckets based on A[i][2]

‘a’

‘b’ abba, cabs, cubs

‘c’

‘d’ beds

‘e’

…

‘s’ bass, dust, best

‘t’

‘u’ stud

…

A
0 1 2 3 4 5 6 7

0 a s b c c b d b

1 b t e a u a u e

2 b u d b b s s s

3 a d s s s s t t

Buckets indexed by each 

character value



Transfer back to A in this order

0 1 2 3 4 5 6 7

0 a c c b b d b s

1 b a u e a u e t

2 b b b d s s s u

3 a s s s s t t d

A

‘a’

‘b’ abba, cabs, cubs

‘c’

‘d’ beds

‘e’

…

‘s’ bass, dust, best

‘t’

‘u’ stud

…

Buckets indexed by each 

character value



Assign to buckets based on A[i][1]

‘a’ cabs, bass

‘b’ abba

‘c’

‘d’

‘e’ beds, best

…

‘s’

‘t’ stud

‘u’ cubs, dust

…

A
0 1 2 3 4 5 6 7

0 a c c b b d b s

1 b a u e a u e t

2 b b b d s s s u

3 a s s s s t t d

Buckets indexed by each 

character value



Transfer back to A in this order

0 1 2 3 4 5 6 7

0 c b a b b s c d

1 a a b e e t u u

2 b s b d s u b s

3 s s a s t d s t

A

‘a’ cabs, bass

‘b’ abba

‘c’

‘d’

‘e’ beds, best

…

‘s’

‘t’ stud

‘u’ cubs, dust

…

Buckets indexed by each 

character value



Assign to buckets based on A[i][0]

‘a’ abba

‘b’ bass, beds, best

‘c’ cabs, cubs

‘d’ dust

‘e’

…

‘s’ stud

‘t’

‘u’

…

A
0 1 2 3 4 5 6 7

0 c b a b b s c d

1 a a b e e t u u

2 b s b d s u b s

3 s s a s t d s t

Buckets indexed by each 

character value



Transfer back to A in this order

0 1 2 3 4 5 6 7

0 a b b b c c d s

1 b a e e a u u t

2 b s d s b b s u

3 a s s t s s t d

A

‘a’ abba

‘b’ bass, beds, best

‘c’ cabs, cubs

‘d’ dust

‘e’

…

‘s’ stud

‘t’

‘u’

…

Note that this is the final order

Buckets indexed by each 

character value



We sorted strings without 
comparing them

0       1     2     3         4     5     6         7

beds dust cabs cubs bass abba stud bestA

0       1     2     3         4     5     6         7

abba bass beds best cabs cubs dust studA

• Why did this work?

• Each time we put the data into bins we are sorting based on that 

character

• Strings that are the same in characters 0 to K for some K will be 

already distinguished (ordered) by character K+1 and that order 

will not change when considering characters from K down to 0



The algorithm is called Radix Sort

• Radix = “The base of a number system” (Webster’s 
dictionary)

• History: used already in 1890 U.S. census by Hollerith, 
became popular in 1920s with sorting data on punch cards

• Idea: Bin Sort on each digit, bottom up.



Strings of different lengths

• Note that direct comparison of Strings goes from left to right 
but in Radix Sort we go from right to left

• What if the Strings are of different lengths?

• Example:

 A[0] = HELP

 A[1] = HELPS

 A[2] = HELPED

• Note that A[0].length() == 4, A[1].length() == 5 and 
A[2].length() == 6

• What can we do to handle this situation?



Solution: padding
• We can "pad" the smaller Strings to make them all the same 

length

• Alphabetically, we would expect

HELP < HELPED < HELPS

• On which side should we add padding (left or right)?

• The prefix of all 3 Strings is "HELP"

• The suffix (right side) is what distinguishes them

• We can get the sort to work correctly if we pad on the right of 
smaller Strings with characters that are less than any valid 
characters in a word

 A[0] = HELP@@

 A[1] = HELPS@

 A[2] = HELPED



Running time of Radix Sortr

• We must iterate through each position in a String (at most M 
such positions)

• For each position we must iterate through all of the Strings, 
putting each into a bucket (N such strings)

• We must then remove them from the buckets and put them 
back into the array (N strings)

• If the max String length is M, and the length of the array is N, 
this will yield a run-time of O(MN)

• If we consider M to be a constant then this run-time will be 
O(N)



Radix Sort of integers

• Input array: 
126, 328, 636, 341, 416, 131, 328

• Bin Sort on lower digit:
341, 131, 126, 636, 416, 328, 328

• Bin Sort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

• Bin Sort that result on highest digit:
126, 131, 328, 328, 341, 416, 636



Radix Sort: performance notes

• Considerable overhead:
• Space overhead for the bins (O(N))
• Time overhead for the copying (not in place)
• Also, overhead in extracting the individual values

• For String this is not a problem
• For int isolating each digit requires some math (i.e. 

overhead)
• Also, even though this is MN vs. N log N for comparison based 

sort, the value of M may be larger than log N for small or 
medium sized arrays
• Ex: Sorting 1000 Strings of maximum length 15 requires 

15xN work for Radix Sort while in this case log N is only 
~10



Applicability of Radix Sort

• Radix Sort is not a generally applicable sorting algorithm

• We must be able to break our key into separate values 
that can be binned into a limited-size array

• Comparison-based sorts allow for arbitrary algorithms to be 
used for the comparison – perhaps even utilizing multiple 
data values

• In some situations Radix Sort can be effective

• It also enables us to look at sorting in a different way

• Later and also in CS 1501 you will look at other algos 
which take an approach similar to Radix Sort (Hashing, 
Tries)



Summary on sorting so far

● Merge sort uses the divide-and-conquer  strategy to sort 

an N-element array in time O (N log N)

● No comparison-based algorithm can do  this 

(asymptotically) faster

● One can do faster if something special is known about the 

input in advance (e.g., each element of an array is a small 

integer or a limited-length sequence)
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