
Lower-bound on

Comparison-Based Sorting

Lecture 19

Can we sort without comparing objects?

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Total: O(n)*log n = O(n log n)

n/8 n/8 n/8 n/8 n/8 n/8 n/8

n/8

Algorithm mergeSort (A[1...n])

if n = 1: return A

m ← ⌊n/2⌋

B ← mergeSort(A[1 ... m])

C ← mergeSort(A[m + 1 ... n])

A′ ← merge(B, C)

return A′

The running time of mergeSort(A[1 ... n]) is O(n log n).

Can we do better?

Lower bound
for Comparison-based sorting

A comparison-based sorting algorithm sorts objects by
comparing pairs of them.

Example:
Selection sort and merge sort are comparison based.

Definition

Lemma
Any comparison-based sorting algorithm performs

Ω(n log n) comparisons in the worst case to sort n objects.

In other words
For any comparison-based sorting algorithm, there exists

an input array A[1 . . . n] such that the algorithm

performs at least Ω(n log n) comparisons to sort A.

no

yes a2 < a1 < a3

Decision Tree
for deciding the order of 3 objects

a1 < a2?

a2 < a3?

yes

no

a2 < a3?
no

a1 ≤ a2 ≤ a3yes

a2 ≤ a3 ≤ a3yes

no a3 ≤ a2 ≤ a1

a1 < a3?

a1 ≤ a3 ≤ a2

a3 ≤ a1 ≤ a2

yes

no

a1 < a3?

Estimating max leaf depth
● The number of leaves ℓ in the tree must be n! (the total number of

permutations of n array elements)

● For the worst-case input the number of comparisons made is equal

to the maximum depth d of this tree

● The max depth of any node in a binary tree with ℓ leaves is at least

O(log ℓ): the minimum happens when the binary tree is complete.

In all other incomplete binary trees the max depth will be > log ℓ.

d ≥ log2 ℓ (or, equivalently, 2d
≥ ℓ)

● The number of leaves ℓ in our decision tree is n!

● Let’s show that:

 log2(n!) = Ω(n log n)

Lemma

log2(n!) = Ω(n log n)

Proof

log2(n!) = log2(1 · 2 · · · · · n)

= log2 1 + log2 2 + · · · + log2 n

≥ log2 (n/2)+ · · · + log2 n

≥ (n/2) log2(n/2) = Ω(n log n)

Corollary
Any comparison-based sorting algorithm

performs (at least) Ω(n log n) comparisons on

the worst case input of size n.

This running time is optimal if we consider
sorting based on comparing pairs of
numbers

Merge Sort
The running time of MergeSort(A[1 . . . n]) is

O(n log n).

Sorting not based on comparison:
 can be faster

0 1 2 3 4 5 6 7 8 9 10 11

2 3 2 1 3 2 2 3 2 2 2 1A

Example 1: sorting small integers

2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2 3

Non-comparison based sorting?

0 1 2 3 4 5 6 7 8 9 10 11

2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2 3

Non-comparison based sorting

1 1 2 2 2 2 2 2 2 3 3 3

0 1 2 3 4 5 6 7 8 9 10 11

2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2 3

Non-comparison based sorting

1 1 2 2 2 2 2 2 2 3 3 3

we have sorted these numbers

without actually comparing them!

0 1 2 3 4 5 6 7 8 9 10 11

Count Sort

● Assume that all elements of A[0 . . . N-1] are
integers from 1 to M.

● By a single scan of the array A, count the number

of occurrences of each 1 ≤ k ≤ M in the array A

and store it in Count[k].

● Using this information, fill in the sorted array A′.

CountSort(A[0 ... N-1])

Count[1 . . . M] ← [0, . . . , 0] # to store counts of A[i]

for i from 0 to N-1:
 Count[A[i]] ← Count[A[i]] + 1

number k appears Count[k] times in A
Pos[1 . . . M] ← [0, . . . , 0]
Pos[1] ← 0
for j from 2 to M :

Pos[j] ← Pos[j − 1] + Count[j − 1]

A’[0 . . . n-1] ← [0, . . . , 0] # to store sorted values of A

number k will occupy range [Pos[k]...Pos[k + 1] − 1]
for i from 0 to N-1:

A′[Pos[A[i]]] ← A[i]
Pos[A[i]] ← Pos[A[i]] + 1

CountSort(A[0 ... n-1])

Count[1 . . . M] ← [0, . . . , 0] # to store counts of A[i]

for i from 0 to N-1:
 Count[A[i]] ← Count[A[i]] + 1
 …

2 7 3Count

1 2 3

0 1 2 3 4 5 6 7 8 9 10 11

2 3 2 1 3 2 2 3 2 2 2 1A

1 scan of A: O(N)

CountSort(A[0 ... n-1])

…

0 2 9Pos

1 2 3

number k appears Count[k] times in A
Pos[1 . . . M] ← [0, . . . , 0]
Pos[1] ← 0
for j from 2 to M :

Pos[j] ← Pos[j − 1] + Count[j − 1]

2 7 3Count

1 2 3

1 scan of Count: O(M)

CountSort(A[0 ... n-1])

…

0 2 9Pos

1 2 3

number k will occupy range [Pos[k]...Pos[k + 1] − 1]
for i from 0 to N-1:

A′[Pos[A[i]]] ← A[i]
Pos[A[i]] ← Pos[A[i]] + 1

0 1 2 3 4 5 6 7 8 9 10 11

1 1 2 2 2 2 2 2 2 3 3 3A'

2 3 2 1 3 2 2 3 2 2 2 1A

1 scan of A: O(N)

Lemma

Provided that all elements of A[1 . . . n] are integers

from 1 to M, countSort(A) sorts A in time O(N + M).

Corollary
If M = O(N), then the running time of Count Sort is O(N).

Non-comparison-based sorting:

 another approach

0 1 2 3 4 5 6 7

beds dust cabs cubs bass abba stud bestA

Example 2: sorting strings

• Consider an array of Strings
• We can use a comparison-based sort to sort these, utilizing

the compareTo() method of String class

0 1 2 3 4 5 6 7

0 b d c c b a s b

1 e u a u a b t e

2 d s b b s b u s

3 s t s s s a d t

A

Example 2: sorting strings (char arrays)

• What if we think of a String as a char array

• Consider the positions in each String, from rightmost to

leftmost, and the character value at that position

• Instead of comparing these characters to one another,

we will use each as an index to a "bin" (actually a

Queue) of Strings

• We will have an array of Queues indexed on the ASCII

characters

Position of a

character

Index in A

Assign to buckets based on A[i][3]

0 1 2 3 4 5 6 7

0 b d c c b a s b

1 e u a u a b t e

2 d s b b s b u s

3 s t s s s a d t

‘a’ abba

‘b’

‘c’

‘d’ stud

‘e’

…

‘s’ beds, cabs, cubs, bass,

‘t’ dust, best

‘u’

…

Buckets indexed by each

character value
A

Each bucket

is a Queue

of Strings

Transfer back to A in this order

0 1 2 3 4 5 6 7

0 a s b c c b d b

1 b t e a u a u e

2 b u d b b s s s

3 a d s s s s t t

‘a’ abba

‘b’

‘c’

‘d’ stud

‘e’

…

‘s’ beds, cabs, cubs, bass,

‘t’ dust, best

‘u’

…

A

We copy the data in order from

the Queues back into the array

Buckets indexed by each

character value

Assign to buckets based on A[i][2]

‘a’

‘b’ abba, cabs, cubs

‘c’

‘d’ beds

‘e’

…

‘s’ bass, dust, best

‘t’

‘u’ stud

…

A
0 1 2 3 4 5 6 7

0 a s b c c b d b

1 b t e a u a u e

2 b u d b b s s s

3 a d s s s s t t

Buckets indexed by each

character value

Transfer back to A in this order

0 1 2 3 4 5 6 7

0 a c c b b d b s

1 b a u e a u e t

2 b b b d s s s u

3 a s s s s t t d

A

‘a’

‘b’ abba, cabs, cubs

‘c’

‘d’ beds

‘e’

…

‘s’ bass, dust, best

‘t’

‘u’ stud

…

Buckets indexed by each

character value

Assign to buckets based on A[i][1]

‘a’ cabs, bass

‘b’ abba

‘c’

‘d’

‘e’ beds, best

…

‘s’

‘t’ stud

‘u’ cubs, dust

…

A
0 1 2 3 4 5 6 7

0 a c c b b d b s

1 b a u e a u e t

2 b b b d s s s u

3 a s s s s t t d

Buckets indexed by each

character value

Transfer back to A in this order

0 1 2 3 4 5 6 7

0 c b a b b s c d

1 a a b e e t u u

2 b s b d s u b s

3 s s a s t d s t

A

‘a’ cabs, bass

‘b’ abba

‘c’

‘d’

‘e’ beds, best

…

‘s’

‘t’ stud

‘u’ cubs, dust

…

Buckets indexed by each

character value

Assign to buckets based on A[i][0]

‘a’ abba

‘b’ bass, beds, best

‘c’ cabs, cubs

‘d’ dust

‘e’

…

‘s’ stud

‘t’

‘u’

…

A
0 1 2 3 4 5 6 7

0 c b a b b s c d

1 a a b e e t u u

2 b s b d s u b s

3 s s a s t d s t

Buckets indexed by each

character value

Transfer back to A in this order

0 1 2 3 4 5 6 7

0 a b b b c c d s

1 b a e e a u u t

2 b s d s b b s u

3 a s s t s s t d

A

‘a’ abba

‘b’ bass, beds, best

‘c’ cabs, cubs

‘d’ dust

‘e’

…

‘s’ stud

‘t’

‘u’

…

Note that this is the final order

Buckets indexed by each

character value

We sorted strings without
comparing them

0 1 2 3 4 5 6 7

beds dust cabs cubs bass abba stud bestA

0 1 2 3 4 5 6 7

abba bass beds best cabs cubs dust studA

• Why did this work?

• Each time we put the data into bins we are sorting based on that

character

• Strings that are the same in characters 0 to K for some K will be

already distinguished (ordered) by character K+1 and that order

will not change when considering characters from K down to 0

The algorithm is called Radix Sort

• Radix = “The base of a number system” (Webster’s
dictionary)

• History: used already in 1890 U.S. census by Hollerith,
became popular in 1920s with sorting data on punch cards

• Idea: Bin Sort on each digit, bottom up.

Strings of different lengths

• Note that direct comparison of Strings goes from left to right
but in Radix Sort we go from right to left

• What if the Strings are of different lengths?

• Example:

 A[0] = HELP

 A[1] = HELPS

 A[2] = HELPED

• Note that A[0].length() == 4, A[1].length() == 5 and
A[2].length() == 6

• What can we do to handle this situation?

Solution: padding
• We can "pad" the smaller Strings to make them all the same

length

• Alphabetically, we would expect

HELP < HELPED < HELPS

• On which side should we add padding (left or right)?

• The prefix of all 3 Strings is "HELP"

• The suffix (right side) is what distinguishes them

• We can get the sort to work correctly if we pad on the right of
smaller Strings with characters that are less than any valid
characters in a word

 A[0] = HELP@@

 A[1] = HELPS@

 A[2] = HELPED

Running time of Radix Sortr

• We must iterate through each position in a String (at most M
such positions)

• For each position we must iterate through all of the Strings,
putting each into a bucket (N such strings)

• We must then remove them from the buckets and put them
back into the array (N strings)

• If the max String length is M, and the length of the array is N,
this will yield a run-time of O(MN)

• If we consider M to be a constant then this run-time will be
O(N)

Radix Sort of integers

• Input array:
126, 328, 636, 341, 416, 131, 328

• Bin Sort on lower digit:
341, 131, 126, 636, 416, 328, 328

• Bin Sort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

• Bin Sort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

Radix Sort: performance notes

• Considerable overhead:
• Space overhead for the bins (O(N))
• Time overhead for the copying (not in place)
• Also, overhead in extracting the individual values

• For String this is not a problem
• For int isolating each digit requires some math (i.e.

overhead)
• Also, even though this is MN vs. N log N for comparison based

sort, the value of M may be larger than log N for small or
medium sized arrays
• Ex: Sorting 1000 Strings of maximum length 15 requires

15xN work for Radix Sort while in this case log N is only
~10

Applicability of Radix Sort

• Radix Sort is not a generally applicable sorting algorithm

• We must be able to break our key into separate values
that can be binned into a limited-size array

• Comparison-based sorts allow for arbitrary algorithms to be
used for the comparison – perhaps even utilizing multiple
data values

• In some situations Radix Sort can be effective

• It also enables us to look at sorting in a different way

• Later and also in CS 1501 you will look at other algos
which take an approach similar to Radix Sort (Hashing,
Tries)

Summary on sorting so far

● Merge sort uses the divide-and-conquer strategy to sort

an N-element array in time O (N log N)

● No comparison-based algorithm can do this

(asymptotically) faster

● One can do faster if something special is known about the

input in advance (e.g., each element of an array is a small

integer or a limited-length sequence)

	Slide 1: Lower-bound on Comparison-Based Sorting
	Slide 2: Merge sort: recursion tree
	Slide 3: Algorithm mergeSort (A[1...n])
	Slide 4: Lower bound for Comparison-based sorting
	Slide 5: Lemma
	Slide 6: Decision Tree for deciding the order of 3 objects
	Slide 7: Estimating max leaf depth
	Slide 8: Lemma
	Slide 9: Corollary
	Slide 10: Merge Sort
	Slide 11: Sorting not based on comparison: can be faster
	Slide 12: Non-comparison based sorting?
	Slide 13: Non-comparison based sorting
	Slide 14: Non-comparison based sorting
	Slide 15: Count Sort
	Slide 16: CountSort(A[0 ... N-1])
	Slide 17: CountSort(A[0 ... n-1])
	Slide 18: CountSort(A[0 ... n-1])
	Slide 19: CountSort(A[0 ... n-1])
	Slide 20: Lemma
	Slide 21: Non-comparison-based sorting: another approach
	Slide 22
	Slide 23: Assign to buckets based on A[i][3]
	Slide 24: Transfer back to A in this order
	Slide 25: Assign to buckets based on A[i][2]
	Slide 26: Transfer back to A in this order
	Slide 27: Assign to buckets based on A[i][1]
	Slide 28: Transfer back to A in this order
	Slide 29: Assign to buckets based on A[i][0]
	Slide 30: Transfer back to A in this order
	Slide 31: We sorted strings without comparing them
	Slide 32: The algorithm is called Radix Sort
	Slide 33: Strings of different lengths
	Slide 34: Solution: padding
	Slide 35: Running time of Radix Sortr
	Slide 36: Radix Sort of integers
	Slide 37: Radix Sort: performance notes
	Slide 38: Applicability of Radix Sort
	Slide 39: Summary on sorting so far

