Lower-bound on Comparison-Based Sorting

Lecture 19

Merge sort: recursion tree

Work at each level: O(n)

Total: $O(n)^* \log n = O(n \log n)$

Algorithm mergeSort (A[1...n])

```
if n = 1: return A

m \leftarrow \lfloor n/2 \rfloor

B \leftarrow \text{mergeSort}(A[1 ... m])

C \leftarrow \text{mergeSort}(A[m + 1 ... n])

A' \leftarrow \text{merge}(B, C)

return A'
```

The running time of mergeSort(A[1 ... n]) is $O(n \log n)$.

Can we do better?

Lower bound for Comparison-based sorting

Definition

A *comparison-based sorting* algorithm sorts objects by comparing pairs of them.

Example:

Selection sort and merge sort are comparison based.

Lemma

Any comparison-based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

In other words

For any comparison-based sorting algorithm, there exists an input array A[1 . . . n] such that the algorithm performs at least $\Omega(n \log n)$ comparisons to sort A.

Decision Tree for deciding the order of 3 objects

Estimating max leaf depth

- The number of leaves ℓ in the tree must be n! (the total number of permutations of n array elements)
- For the worst-case input the number of comparisons made is equal to the maximum depth *d* of this tree
- The max depth of any node in a binary tree with \(\ell\) leaves is at least O(log \(\ell\)): the minimum happens when the binary tree is complete.
 In all other incomplete binary trees the max depth will be > log \(\ell\).

$$d \ge \log_2 \ell$$
 (or, equivalently, $2^d \ge \ell$)

- The number of leaves \(\ell\) in our decision tree is n!
- Let's show that:

$$\log_2(n!) = \Omega(n \log n)$$

Lemma

At least!

$$\log_2(n!) = \Omega(n \log n)$$

Proof

$$\log_2(n!) = \log_2(1 \cdot 2 \cdot \dots \cdot n)$$

$$= \log_2 1 + \log_2 2 + \dots + \log_2 n$$
Consider only the second half of the sum

consider only the smallest element of the sum

$$\geq \log_2(n/2) + \cdots + \log_2 n$$

$$\geq$$
 (n/2) $\log_2(n/2) = \Omega(n \log n)$

Corollary

Any **comparison-based sorting** algorithm performs (at least) $\Omega(n \log n)$ comparisons on the worst case input of size n.

Merge Sort

The running time of MergeSort(A[1 . . . n]) is $O(n \log n)$.

This running time is *optimal* if we consider sorting based on comparing pairs of numbers

Sorting not based on comparison: can be faster

Example 1: sorting small integers 0 1 2 3 4 5 6 7 8 9 10 11 2 3 2 1 3 2 2 3 2 2

Non-comparison based sorting?

Non-comparison based sorting

Non-comparison based sorting

Count Sort

- Assume that all elements of A[0 . . . N-1] are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \le k \le M$ in the array A and store it in Count[k].
- Using this information, fill in the sorted array A'.

CountSort(A[0 ... N-1])

```
Count[1...M] \leftarrow [0,...,0] # to store counts of A[i]
for i from 0 to N-1:
   Count[A[i]] \leftarrow Count[A[i]] + 1
# number k appears Count[k] times in A
Pos[1...M] \leftarrow [0,...,0]
Pos[1] \leftarrow 0
for j from 2 to M:
   Pos[j] \leftarrow Pos[j-1] + Count[j-1]
A'[0...n-1] \leftarrow [0,...,0] # to store sorted values of A
# number k will occupy range [Pos[k]...Pos[k+1]-1]
for i from 0 to N-1:
   A'[Pos[A[i]]] \leftarrow A[i]
   Pos[A[i]] \leftarrow Pos[A[i]] + 1
```

CountSort(A[0 ... n-1])

```
Count[1...M] \leftarrow [0,...,0] # to store counts of A[i]
for i from 0 to N-1:
 Count[A[i]] \leftarrow Count[A[i]] + 1
```

1 scan of A: O(N)

CountSort(A[0 ... n-1])

• • •


```
# number k appears Count[k] times in A
Pos[1...M] \leftarrow [0,...,0]
Pos[1] \leftarrow 0
for j from 2 to M:
Pos[j] \leftarrow Pos[j-1] + Count[j-1]
```

CountSort(A[0...n-1])

• • •

```
# number k will occupy range [Pos[k]...Pos[k+1]-1] for i from 0 to N-1:
A'[Pos[A[i]]] \leftarrow A[i]
Pos[A[i]] \leftarrow Pos[A[i]] + 1
```

Lemma

Provided that all elements of A[1...n] are integers from 1 to M, countSort(A) sorts A in time O(N + M).

Corollary

If M = O(N), then the running time of Count Sort is O(N).

Non-comparison-based sorting: another approach

- Consider an array of Strings
- We can use a comparison-based sort to sort these, utilizing the compareTo() method of String class

Example 2: sorting strings (char arrays)

- What if we think of a String as a char array
- Consider the positions in each String, from rightmost to leftmost, and the character value at that position
- Instead of comparing these characters to one another, we will use each as an index to a "bin" (actually a Queue) of Strings
- We will have an array of Queues indexed on the ASCII characters

Assign to buckets based on A[i][3]

Buckets indexed by each character value

abb <mark>a</mark>	
stud	
beds, cabs, cubs, bass,	
dust, best	
	stud beds, cabs, cubs, bass,

Each bucket is a Queue of Strings

Transfer back to A in this order

3 4 5 6 b b d b a S С С 1 b е a а u u е d b b b u S S S а S S S t S

We copy the data in order from the Queues back into the array

'a'	abba
ʻb'	
'c'	
'd'	stud
'e'	
's'	beds, cabs, cubs, bass,
't'	dust, best
ʻu'	
•••	

Assign to buckets based on A[i][2]

ʻa'	
ʻb'	abba, cabs, cubs
'c'	
'd'	beds
'e'	
's'	bass, dust, best
't'	
ʻu'	stud
•••	

Transfer back to A in this order

ʻa'	
ʻb'	abba, cabs, cubs
'c'	
'd'	beds
'e'	
's'	bass, dust, best
't'	
ʻu'	stud

Assign to buckets based on A[i][1]

ʻa'	cabs, bass
ʻb'	a <mark>b</mark> ba
'c'	
'd'	
'e'	beds, best
's'	
't'	stud
ʻu'	cubs, dust

Transfer back to A in this order

ʻa'	cabs, bass
ʻb'	abba
'c'	
'd'	
'e'	beds, best
's'	
't'	stud
ʻu'	cubs, dust
•••	

Assign to buckets based on A[i][0]

ʻa'	abba
ʻb'	bass, beds, best
'c'	cabs, cubs
'd'	dust
'e'	
's'	stud
't'	
ʻu'	
•••	

Transfer back to A in this order

Note that this is the final order

ʻa'	abba
ʻb'	bass, beds, best
'c'	cabs, cubs
'd'	dust
'e'	
's'	stud
't'	
ʻu'	

We sorted strings without comparing them

- Why did this work?
- Each time we put the data into bins we are sorting based on that character
- Strings that are the same in characters 0 to K for some K will be already distinguished (ordered) by character K+1 and that order will not change when considering characters from K down to 0

The algorithm is called Radix Sort

- Radix = "The base of a number system" (Webster's dictionary)
- History: used already in 1890 U.S. census by Hollerith, became popular in 1920s with sorting data on punch cards
- Idea: Bin Sort on each digit, bottom up.

Strings of different lengths

- Note that direct comparison of Strings goes from left to right but in Radix Sort we go from right to left
- What if the Strings are of different lengths?
- Example:

```
A[0] = HELP
A[1] = HELPS
A[2] = HELPED
```

- Note that A[0].length() == 4, A[1].length() == 5 and A[2].length() == 6
- What can we do to handle this situation?

Solution: padding

- We can "pad" the smaller Strings to make them all the same length
- Alphabetically, we would expect HELP < HELPED < HELPS
- On which side should we add padding (left or right)?
- The prefix of all 3 Strings is "HELP"
- The suffix (right side) is what distinguishes them
- We can get the sort to work correctly if we pad on the right of smaller Strings with characters that are less than any valid characters in a word

```
A[0] = HELP@@
A[1] = HELPS@
A[2] = HELPED
```

Running time of Radix Sortr

- We must iterate through each position in a String (at most M such positions)
- For each position we must iterate through all of the Strings, putting each into a bucket (N such strings)
- We must then remove them from the buckets and put them back into the array (N strings)
- If the max String length is M, and the length of the array is N, this will yield a run-time of O(MN)
- If we consider M to be a constant then this run-time will be O(N)

Radix Sort of integers

- Input array:
 126, 328, 636, 341, 416, 131, 328
- Bin Sort on lower digit:
 341, 131, 126, 636, 416, 328, 328
- Bin Sort result on next-higher digit:
 416, 126, 328, 328, 131, 636, 341
- Bin Sort that result on highest digit:
 126, 131, 328, 328, 341, 416, 636

Radix Sort: performance notes

- Considerable overhead:
 - Space overhead for the bins (O(N))
 - Time overhead for the copying (not in place)
 - Also, overhead in extracting the individual values
 - For String this is not a problem
 - For int isolating each digit requires some math (i.e. overhead)
- Also, even though this is MN vs. N log N for comparison based sort, the value of M may be larger than log N for small or medium sized arrays
 - Ex: Sorting 1000 Strings of maximum length 15 requires
 15xN work for Radix Sort while in this case log N is only
 ~10

Applicability of Radix Sort

- Radix Sort is not a generally applicable sorting algorithm
 - We must be able to break our key into separate values that can be binned into a limited-size array
- Comparison-based sorts allow for arbitrary algorithms to be used for the comparison – perhaps even utilizing multiple data values
- In some situations Radix Sort can be effective
- It also enables us to look at sorting in a different way
 - Later and also in CS 1501 you will look at other algos which take an approach similar to Radix Sort (Hashing, Tries)

Summary on sorting so far

- Merge sort uses the divide-and-conquer strategy to sort an N-element array in time O (N log N)
- No comparison-based algorithm can do this (asymptotically) faster
- One can do faster if something special is known about the input in advance (e.g., each element of an array is a small integer or a limited-length sequence)