
Sorting with
Divide and Conquer

Merge Sort

Lecture 18

1. Break into non-overlapping subproblems
of the same type

2. Solve subproblems

3. Combine results

Divide-and-conquer technique

Divide: break

apart

Conquer: solve

subproblems

✓

✓

✓ ✓

Combine

✓

✓ ✓

✓

✓

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

sort the halves recursively

2 3 5 7 1 6 7 13

split the array into two halves

merge the sorted halves into one array

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

split the array into two halves

sort the halves recursively

Algorithm MergeSort (array A[1...n])

if n = 1: return A # already sorted

m ← ⌊n/2⌋

B ← MergeSort(A[1 ... m])

C ← MergeSort(A[m + 1 ... n])

A′ ← merge(B, C)

return A′

Merging Two Sorted Arrays

Algorithm Merge(B[1... p], C [1... q])

B and C are sorted
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move what remains of B or C to the end of D
return D

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

Merge: example

2 3 5 7 1 6 7 13
i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2

i
j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7

j

B C

D

Copy what remains in C

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

B C

D

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: running time

Subproblem
size at each
level

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
The height
of this tree
is...

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
The height
of tnis tree
is log n

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: all the work during merge

c*n

2 * cn/2

4*cn/4

8*cn/8

n*c

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Total: O(n)*log n = O(n log n)

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

Sorting: Java way

Demo code: LINK

https://github.com/mgbarsky/cs0445-demo/tree/main/18.sorting_injava/javasorting

Sorting with
java.util.Collections

• Java class Collections consists exclusively of static
methods implementing various algorithms on Collections

• The Collections.sort() implements merge sort

• The method takes in any Collection and rearranges its
elements in-place – the collection becomes sorted

• You encountered one of subclasses of Collection:
ArrayList – which is just a dynamic array

• So we can say: Collections.sort(arrayList)

To be sorted elements must be
Comparable
• To sort elements of any type we use generics
• ArrayList stores parametrized types:

public class ArrayList<E>

List<Dog> dogs = new ArrayList<Dog> ();

• When we sort array of Strings, Dates or any primitive
wrapper class of objects, then for these the order is already
defined

• But if we want to sort custom objects – how should the
algorithm compare them?

Imagine you have an array of people. How would you put
them in order? By height? By intelligence? By hotness?

We need a custom Comparator
• Merge sort algorithm compares pairs of values during the merge

step, and pulls them into output according to this order

• We need to tell to the algorithm how two items should be
compared

• We communicate this using one of three int values:

Positive number

Negative number

Zero

a b

>

<

==

Example: Sorting Dogs
public class Dog{
 String name;
 double age;
 int height;
 String owner;

 public Dog(String name, double age,
 int height, String owner) {
 this.name = name;
 this.age = age;
 this.height = height;
 this.owner = owner;
 }
}

public static void main(String [] args) {
 List<Dog> dogs = new ArrayList<Dog> ();

 dogs.add(new Dog("Lisa", 2, 10, …));
 …

 Collections.sort(dogs);
}

We cannot sort dogs, because
it is not clear how two Dogs
should be compared

Custom class
of objects

Comparable interface

• Java provides Comparable interface which should be
implemented by any custom class if we want to use sorting
in Arrays or Collections

• The Comparable interface has parametrized
compareTo(T obj) method which is used by the
sorting algorithm to compare pairs of objects

• Our custom classes must implement this interface if we
want to sort objects of a new type

Comparable Dogs

Comparable interface declares a
single method compareTo which
returns a negative integer, zero,
or a positive integer if “this”
object is less than, equal to, or
greater than another object
passed as an argument.

public class Dog implements Comparable<Dog>{
 String name;
 …

 public int compareTo(Dog another) {
 return this.name.compareTo((another).name);
 }
}

We declare Dog as
Comparable<Dog>

Note that
interface is also
parametrized

We want to sort by
name, which is String,
and Strings already have
compareTo method – so
we reuse it here

We can sort now
public static void main(String [] args) {
 List<Dog> dogs = new ArrayList<Dog> ();
 dogs.add(…);…

 System.out.println("Before sorting:");
 printDogs(dogs);

 Collections.sort(dogs);
 System.out.println("After default sorting:");
 printDogs(dogs);
}

Before sorting:
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Bart 4.0 years 15 inches owned by Bob
Dog Marge 7.0 years 12 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob

After default sorting:
Dog Bart 4.0 years 15 inches owned by Bob
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Marge 7.0 years 12 inches owned by Alice

Flexible sorting

• In most real-life scenarios, we want to be able to sort based
on different fields

For example, we would like to be able to sometimes sort
the employees based on salary, and another time sort
them by last name or sort them by age – depending on
the task

• The implementation of Comparable.compareTo()
method enables only one default sorting and we can’t
change it dynamically

• To define multiple ways of sorting we can use Java
Comparator interface and implement different
comparators

Custom Dog Comparators: 1/3
• We can implement the Height Comparator in a separate class, and then

pass it as a second parameter to the Collections.sort()

import java.util.Comparator;

public class HeightComparator
 implements Comparator<Dog> {
 public int compare(Dog d1, Dog d2) {
 return d1.height - d2.height;
 }
}

public static void main(String [] args) {
 …

 Collections.sort(dogs, new HeightComparator());
 System.out.println("After sorting by height:");
 printDogs(dogs);
}

After sorting by height:
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Marge 7.0 years 12 inches owned by Alice
Dog Bart 4.0 years 15 inches owned by Bob

That is
implemented in a
separate file

Custom Dog Comparators: 2/3
• We can implement the Age Comparator inside the Dog class – as a static

method which returns a new Age Comparator. Note that we only need
to pass its name to Collections.sort()

public static void main(String [] args) {
 …
 Collections.sort(dogs, AgeComparator);
 System.out.println("After sorting by age:");
 printDogs(dogs);
} After sorting by age:

Dog Lisa 2.0 years 10 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Bart 4.0 years 15 inches owned by Bob
Dog Marge 7.0 years 12 inches owned by Alice

public class Dog implements Comparable<Dog>{
 …

 public static Comparator<Dog> AgeComparator =
 new Comparator<Dog>() {
 public int compare(Dog d1, Dog d2) {
 return (int) (d1.age - d2.age);
 }
 };
}

This is part of the
Dog class

Custom Dog Comparators: 3/3
• We can implement the Owner Comparator in place – directly inside the

call to Collections.sort()

public static void main(String [] args) {
 …
 Collections.sort(dogs, new Comparator<Dog>() {
 public int compare(Dog d1, Dog d2) {
 return d1.owner.compareTo(d2.owner);
 }
 });

 System.out.println("After sorting by owner:");
 printDogs(dogs);
}

After sorting by owner:
Dog Lisa 2.0 years 10 inches owned by Alice
Dog Marge 7.0 years 12 inches owned by Alice
Dog Lisa 3.0 years 8 inches owned by Bob
Dog Bart 4.0 years 15 inches owned by Bob

This is implemented
directly as the
second parameter
to sort(). Note that
this comparator
does not have a
name, so it cannot
be reused in any
other part of the
program.

Which of the following will
sort Dogs in reverse order
of their height (from the
tallest to the shortest)?

• A

• B

• C

• All of the above

• None of the
above

Collections.sort(dogs, new Comparator<Dog>() {
 public int compare(Dog d1, Dog d2) {
 return d2.height – d1.height;
 }
 });

Collections.sort(dogs, new Comparator<Dog>() {
 public int compare(Dog d1, Dog d2) {
 return - d1.compareTo(d2);
 }
 });

Collections.sort(dogs, new Comparator<Dog>() {
 public int compare(Dog d1, Dog d2) {
 return d2.compareTo(d1);
 }
 });

public class Dog implements Comparable<Dog>{
 …
 public int compareTo(Dog another) {
 return this.height – another.height;
 }
}

A

B

C

height is integer

Java Merge Sort: notes

• The sorting in Java uses an optimized merge sort algorithm:
the merge step is omitted if the highest element in the low
sublist is less than the lowest element in the high sublist

• This algorithm offers guaranteed O(n log n) performance

• If we sort a LinkedList, this implementation dumps the
specified list into an array, sorts the array, and iterates over
the list resetting each element from the corresponding
position in the array. This is faster in practice than
attempting to merge-sort a LinkedList directly (we need to
add another O(n) at each level during partitioning phase)

	Slide 1: Sorting with Divide and Conquer Merge Sort Lecture 18
	Slide 2: Divide-and-conquer technique
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Idea: merge sort
	Slide 8: Idea: merge sort
	Slide 9: Idea: merge sort
	Slide 10: Algorithm MergeSort (array A[1...n])
	Slide 11: Merging Two Sorted Arrays
	Slide 12: Merge sort: example
	Slide 13: Merge sort: example
	Slide 14: Merge sort: example
	Slide 15: Merge sort: example
	Slide 16: Merge sort: example
	Slide 17: Merge sort: example
	Slide 18: Merge: example
	Slide 19: Merge: example
	Slide 20: Merge: example
	Slide 21: Merge: example
	Slide 22: Merge: example
	Slide 23: Merge: example
	Slide 24: Merge: example
	Slide 25: Merge: example
	Slide 26: Merge sort: running time
	Slide 27: Merge sort: recursion tree
	Slide 28: Merge sort: recursion tree
	Slide 29: Merge sort: recursion tree
	Slide 30: Merge sort: recursion tree
	Slide 31: Sorting: Java way
	Slide 32: Sorting with java.util.Collections
	Slide 33: To be sorted elements must be Comparable
	Slide 34: We need a custom Comparator
	Slide 35: Example: Sorting Dogs
	Slide 36: Comparable interface
	Slide 37: Comparable Dogs
	Slide 38: We can sort now
	Slide 39: Flexible sorting
	Slide 40: Custom Dog Comparators: 1/3
	Slide 41: Custom Dog Comparators: 2/3
	Slide 42: Custom Dog Comparators: 3/3
	Slide 43: Which of the following will sort Dogs in reverse order of their height (from the tallest to the shortest)?
	Slide 44: Java Merge Sort: notes

