
Simple Sorting Algorithms
Lecture 17

Why Sorting?

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-
algorithms/a/sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

• Sorting data is an important step of many efficient
algorithms

• Sorted data allows for more efficient queries
(binary search)

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting
https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms

Sorting Problem

Input: List A of n elements
Output: Permutation A’ of elements in A

such that all elements of A’
are in non-decreasing order.

For any two indexes i, j: if i < j, then A'[i] <= A'[j]

Recap: Simple Sorting Algorithms

• Insertion sort

• Selection sort

• Bubble sort

Insertion Sort

• "Remove" the items one at a time from the original array
and "Insert" them into a new array, putting them into the
correct relative sorted order as you insert

• We could accomplish this by using two arrays as implied
above, but that would double our memory requirements

• We'd rather be able to sort in place:

Use only a constant amount of extra memory

Insertion Sort: in-place

• We are going to keep 2 logical parts in the array:

• In each iteration, we will take the next item out of the
UNSORTED section and put it into its correct relative
location in the SORTED section

SORTED UNSORTED

0 1 2 3 4 5 6 7

20 40 70 30 50 10 80 60

20 30 40 70 50 10 80 60

20 30 40 50 70 10 80 60

10 20 30 40 50 70 80 60

private static void insertInOrder(int element, int[] a,
 int begin, int end) {
 int index;
 // searching for the correct placve for element in the sorted part
 //shifting values to the right
 for (index = end; (index >= begin) && (element < a[index]); index--){
 a[index + 1] = a[index];
 } // end for

 a[index + 1] = element; // insert
} // end insertInOrder

Insertion sort: code

• "Insert" each
item in array
into its
correct spot

• Find correct spot for current element
• Note that this goes from back to front
• Shift to the right always goes from back to

front

public static void insertionSort(int[] a, int first, int last) {
 int unsortedIndex; // each element of a becomes the unsorted in turn

 for (unsortedIndex = first + 1; unsortedIndex <= last; unsortedIndex++) {
 // Assertion: a[first] <= a[first + 1] <= ... <= a[unsorted - 1]

 int unsorted = a[unsortedIndex];

 insertInOrder(unsorted, a, first, unsortedIndex - 1);
 } // end for
} // end insertionSort

Insertion sort:
implementation details
• Initial method has only the input array as a param

• This calls an overloaded version with start and end index
values as params – allows us to sort only part of the array if
we want

• Each iteration in this method brings one more item from the
unsorted portion of the array into the sorted portion

• It does this by calling another method to actually move the
value into its correct spot

• Values are shifted from left to right, leaving a "hole" in the
spot where the item should be

Running time of Insertion Sort

• Key instruction: comparisons of array items

• What is the WORST possible input?
REVERSE SORTED data – think why?

• Consider each iteration of the insertionSort loop
• when unsorted = 1, 1 comparison in insertInOrder method

• when unsorted = 2, 2 comparisons in insertInOrder method

• …

• when unsorted = N-1, N-1 comps in insertInOrder method

• Overall we get 1 + 2 + … + N-1 = (N-1)(N)/2 = O(N2)

• This is the worst case

Can input be a Linked List?

• Yes – in fact it is probably more natural with a linked list

• At each iteration simply remove the front node from the
input list, and "insert it in order" into a second, new list

• This is still “in-place”: we are not creating ANY new nodes –
just moving the ones we have around

40 105020 30

front

sorted

Insertion Sort of a Linked List

40

105020 30

front

sorted

Insertion Sort of a Linked List

40

105020 30

front

sorted

Insertion Sort of a Linked List

40

1050

20

30

front

sorted

Insertion Sort of a Linked List

40

1050

20

30

front

sorted

Insertion Sort of a Linked List

40

1050

20

30

front

sorted

Insertion Sort of a Linked List

40

10

5020

30

front

sorted

Insertion Sort of a Linked List

4010 5020

30

front

sorted

Insertion Sort of a Linked List

4010 5020 30

front

sorted

Insertion Sort of a Linked List

• Run-time?

• What is the worst case input now?

Insertion Sort of a Linked List

• Each node is removed from the original list and is "inserted"
into the second list in the proper location

• We insert from front to back of the sorted list, comparing
the data as we go

• In this case the worst case is when the correct position of
every new node is at the END of the list
• This would occur if the data was initially sorted (!)

• The run-time is the same as for the array implementation:
O(N2)

Other sorts: Selection Sort

• At iteration i of the outer loop, find the i-th smallest item
and swap it into location i

• i = 0 : find 0th smallest and swap into location 0

• i = 1 : find 1th smallest and swap into location 1

• …

• i = N-2 : find (N-2)-th smallest and swap into loc N-2

• Also implementation is simple using 2 nested for loops (or
method calls, as shown in text)

• We looked at the Selection Sort code when we learned
about generic sorting: LINK

Running time: O(N2)

https://github.com/mgbarsky/cs0445-demo/blob/main/4.generics/SortArray.java

Other sorts: Bubble Sort

For k from N-1 to 2 :

For j from 0 to k-1

Item j is compared to item j+1

If item j is greater than item j+1, they are out of order

In this case we swap them

By the end of iteration k the largest item is “Bubbled up”
into position k.

Early stopping: when no more swaps

Running time: O(N2)

Bubble Sort example

Running time: O(N2)

0 1 2 3 4 5 6

50 30 40 70 10 80 20

30 50 40 70 10 80 20

30 40 50 70 10 80 20

30 40 50 70 10 80 20

30 40 50 10 70 80 20

30 40 50 10 70 80 20

30 40 50 10 70 20 80

One iteration:

Total: N iterations

Recursive Implementations

• Textbook also discusses recursive implementations of
InsertionSort and SelectionSort

• As with Sequential Search, this is more to demonstrate an
idea rather than something that we would actually do

• These recursive versions are not divide and conquer, there is
no efficiency or implementation motivation to doing them
recursively

• Read over these explanations and convince yourselves that
the recursive versions do the same thing as the iterative
versions and have the same O(N2) running time

Comparing runtime in practice

• Note diff between InsertionSort and SelectionSort:
• Both have two nested "for" loops

• In InsertionSort, "inner" for loop will stop when the item is at the
correct insertion point
• Running time is very different for different inputs
• Best-case O(N): for an almost sorted input

• In SelectionSort we don't have an early stopping condition:
• Thus it doesn't matter how the data is initially organized
• There is no "worst case" or "best case“: all cases iterate the

same number of times and do the same number of
comparisons: O(N2)

Idea for improving Insertion Sort

• What makes its performance poor?

• Consider what happens within each iteration:

• Either nothing (if items are already in order)

• Or the value moves of 1 location (it only moves several
positions)

• If the element is greatly out of order, it will take a lot of
adjacent comparisons to find its place in the sorted part

• If we can swap the current item farther than by one
position, perhaps we can improve the performance

Shell sort

• Rather than comparing adjacent items, we compare items
that are farther away from each other

• Specifically, we compare and "sort" items that are K
locations apart for some K

• i.e. we InsertionSort subarrays of our original array that
are K locations apart

• We gradually reduce K from a large value to a small one,
ending with K = 1

• Note that when K = 1 the algorithm is straight
InsertionSort

Shell sort: example
0 1 2 3 4 5 6 7

40 20 70 60 50 10 80 30

40 10 70 30 50 20 80 60
K = 4

40 10 70 30 50 20 80 60

40 10 50 20 70 30 80 60

K = 2

40 10 50 20 70 30 80 60

10 20 30 40 50 60 70 80

K = 1

The idea is that by the time K = 1, most of the data

will be almost sorted and will not have to move far

Shell sort: code 1/2
public static void shellSort(int[] a) {
 int n = a.length;
 int first = 0;
 int last = n-1;

 int gap = n / 2;// initial gap is n/2
 if (gap % 2 == 0)
 gap ++;

 // Continue until the gap is zero
 while (gap > 0) {
 // for each position inside the gap
 //do insertion sort on the corresponding subarray
 for (int begin = first; begin < first + gap; begin++){
 insertionSortSubarray(a, begin, last, gap);
 }

 gap = gap / 2;// reduce gap
 if (gap > 0 && gap % 2 == 0)
 gap ++;
 } // end while
} // end shellSort

Shell sort: code 2/2

private static void insertionSortSubarray (int [] a,
 int start, int end, int gap) {
 int unsortedIndex, index;
 // go through all elements in the subarray
 //starting from the second
 for (unsortedIndex = start + gap; unsortedIndex <= end;
 unsortedIndex=unsortedIndex+gap){
 int unsorted = a[unsortedIndex];
 index = unsortedIndex - gap;
 while ((index >= start) && unsorted < a[index]){
 a[index + gap] = a[index];
 index = index - gap;
 } // end while

 a[index + gap] = unsorted;
 } // end for
}

ShellSort: performance

• It seems like this algorithm will actually be worse than
InsertionSort :

• Its last "iteration" is a full InsertionSort

• Previous iterations do InsertionSorts of subarrays with
the total of N elements

• Yet when timed it actually outperforms InsertionSort

• Recall that the original InsertionSort actually has a (O(N))
performance in the best case – ShellSort moves the data
toward this best case

ShellSort: big O

• We move the data less time and when we reach the last
step the data is mostly sorted and does not require many
steps to find the final position of an item

• Precise analysis is tricky, and depends on the values for K
(initial value and how it is updated)

• If you always use K to be odd, it can be shown that ShellSort
has time complexity O(N3/2) [Compare to N2 for large N]

• See textbook for more details and Wikipedia

https://en.wikipedia.org/wiki/Shellsort

Can we do better?

• Simple sorting algorithms:

• InsertionSort – O(N2)

• SelectionSort – O(N2)

• BubbleSort – O(N2)

• ShellSort – O(N1.5)

• For a small number of items, their simplicity makes them ok
to use

• But for a large number of items, this is not a good run-time

Yes, using divide-and-conquer

	Slide 1: Simple Sorting Algorithms
	Slide 2: Why Sorting?
	Slide 3: Sorting Problem
	Slide 4: Recap: Simple Sorting Algorithms
	Slide 5: Insertion Sort
	Slide 6: Insertion Sort: in-place
	Slide 7: Insertion sort: code
	Slide 8: Insertion sort: implementation details
	Slide 9: Running time of Insertion Sort
	Slide 10: Can input be a Linked List?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Insertion Sort of a Linked List
	Slide 21: Other sorts: Selection Sort
	Slide 22: Other sorts: Bubble Sort
	Slide 23: Bubble Sort example
	Slide 24: Recursive Implementations
	Slide 25: Comparing runtime in practice
	Slide 26: Idea for improving Insertion Sort
	Slide 27: Shell sort
	Slide 28: Shell sort: example
	Slide 29: Shell sort: code 1/2
	Slide 30: Shell sort: code 2/2
	Slide 31: ShellSort: performance
	Slide 32: ShellSort: big O
	Slide 33: Can we do better?

