
Hash tables
Collision Resolution

Lecture 14

by Marina Barsky

Next to perfect

• No hash function can guarantee that we will find
the object in the position object.hashCode

• The next best thing: it can direct us to the place in
the array where to start searching

Collision resolution strategies

➢Open addressing: each key will have its own slot in the
array

○ Linear probing

○Quadratic probing

○Double hashing

➢Closed addressing: each slot in the array will contain a
collection of keys

oSeparate chaining

Linear probing

➢What can we do when two different values attempt to
occupy the same slot in the array?

○ Search from there for an empty location

■ Can stop searching when we find the value or an empty
location

■ Search must be end-around (circular array!)

Add with linear probing

• Suppose you want to add seagull to this
hash table

• Also suppose:
• hashCode(‘seagull’) = 143
• table[143] is not empty
• table[143] != seagull
• table[144] is not empty
• table[144] != seagull
• table[145] is empty

• Therefore, put seagull at location 145

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Get with linear probing: seagull

• Suppose you want to look up seagull in
this hash table

• Also suppose:
• hashCode(seagull) = 143

• table[143] is not empty

• table[143] != seagull

• table[144] is not empty

• table[144] != seagull

• table[145] is not empty

• table[145] == seagull !

• We found seagull at location 145

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Get with linear probing: cow

• Suppose you want to look up cow in this
hash table

• Also suppose:
• hashCode(cow) = 144

• table[144] is not empty
• table[144] != cow

• table[145] is not empty
• table[145] != cow

• table[146] is empty

• If cow were in the table, we should have
found it by now

• Therefore, it isn’t here

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Add with linear probing

• Suppose you want to add hawk to this
hash table

• Also suppose

• hashCode(hawk) = 143

• table[143] is not empty

• table[143] != hawk

• table[144] is not empty

• table[144] == hawk

• hawk is already in the table, so do
nothing

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Add with linear probing

• Suppose you want to add cardinal to
this hash table

• Also suppose:

• hashCode(cardinal) = 147

• The last location is 148

• 147 and 148 are occupied

• Solution:

• Treat the table as circular; after
148 comes 0

• Hence, cardinal goes in location 0
(or 1, or 2, or ...)

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Problem 1 with
open addressing: deletion

➢What happens if we delete
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

robin

sparrow

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

Problem 1 with
open addressing: deletion

➢What happens if we delete
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

robin

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

Problem 1 with
open addressing: deletion

➢What happens if we delete
sparrow?
○hashCode(sparrow)=143

○hashCode(seagull)=143

➢Now when searching for seagull
we check
○ table[143] is empty

○ We can not find seagull!

robin

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

Solution to the deletion problem

➢After we delete sparrow we put a
special sign deleted instead of empty
○ hashCode(sparrow)=143
○ hashCode(seagull)=143

➢Now when searching for seagull we
check
○ table[143] is deleted
○ We skip it
○ table[144] is not empty
○ table[144] !=seagull
○ table[145]=seagull

We found seagull!

➢The deleted slots are filling up during
the subsequent insertions

robin

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

*Deleted

Problem 2 with linear probing:
clustering
➢A big problem with the above technique is the tendency to

form “clusters”

➢A cluster is a consecutive area in the array not containing any
open slots

➢The bigger a cluster gets, the more likely it is that new values
will hash into the cluster, and make it even bigger

➢Clusters cause degradation in the efficiency of search

➢Here is a non-solution: instead of stepping one ahead, step k
locations ahead

○ The clusters are still there, they’re just harder to see

○ Unless k and the table size are mutually prime, some
table locations will not be ever checked

Solution 1 to clustering problem:
Quadratic probing

➢As before, we first try slot j=hashCode MOD M.

➢If this slot is occupied, instead of trying slot j=|(j+1) MOD M|,
try slot:

j=|(hashCode+i2) MOD M|, where i takes values with increment of 1 and
we continue until j points to an empty slot

➢For example if position hashCode is initially 5, and M=7 we try:

j = 5 MOD 7 = 5

j =(5 + 12) MOD 7 = 6 MOD 7 = 6

j =(5 + 22) MOD 7 = 9 MOD 7 = 2

j =(5 + 32) MOD 7 = 14 MOD 7 = 0 etc.

Under quadratic probing, with the
following array, where will an item that
hashes to 3 get placed?

A. 0

B. 2

C. 5

D. 9

E. None of the above

j=|(hashCode+i2) MOD N|, hashCode = 3, N=10

Index Value

0

1

2

3 x

4 x

5

6

7 x

8

9

Problems with Quadratic probing

➢Quadratic probing helps to avoid the clustering problem

➢But it creates its own kind of clustering, where the filled array
slots “bounce” in the array in a fixed pattern

➢In practice, even if M is a prime, this strategy may fail to find
an empty slot in the array that is just half full!

Solution 2 to clustering problem:
Double hashing
➢In this approach we choose the secondary hash function:

stepHash(k).

➢If the slot j=hashCode MOD M is occupied, we iteratively
try the slots

j = |(hashCode+i*stepHash) MOD M|

➢The secondary hash function stepHash is not allowed to
return 0

➢The common choice (Q is a prime):

stepHash(S)=Q-(hashCode(S) mod Q)

Collision resolution strategies

➢Open addressing: each key will have its own slot in the
array

○ Linear probing

○Quadratic probing

○Double hashing

➢Closed addressing: each slot in the array will contain a
collection of keys

oSeparate chaining

Separate chaining

➢The previous solutions
use open addressing: all
entries go into a “flat”
(unstructured) array

➢Another solution is to
store in each location the
head of a linked list of
values that hash to that
location

robin

sparrow

hawk

bluejay

owl

seagull

. . .

141

142

143

144

145

146

147

148

. . .

Separate chaining: Get

➢The Hash table becomes an array of M
linked lists

➢To find an Object with hashCode i

○ Retrieve List head pointer from
table[i]

○ Scan the chain of links

➢Running time depends on the length of
the chain

robin

sparrow

hawk

bluejay

owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull parrot

Separate Chaining
vs. Open Addressing

➢If the space is not an issue, separate chaining is the
method of choice: it will create new list elements until the
entire memory permits

➢If you want to be sure that you occupy exactly M array
slots, use open addressing, and use the probing strategy
which minimizes clustering

ADT Map operations: performance

Get
(Contains)

Add Remove Get
(Contains)

Add Remove

O(N) O(1)** O(N) N/2 1** N/2

O(N) O(1)** O(N) N/2 1** N/2

O(log N) O(N) O(N) log N N/2 N/2

O(N) O(N) O(N) 1* 1* 1*

O(N) O(N) O(N) 1* 1* 1*

Implementation

Unsorted Array

Unsorted Linked List

Sorted Array

Hash table with
linear probing

Hash table with
separate chaining

Worst case Expected

*Given a good hash function**If we know that new key is unique

Hash table performance

➢Hash tables are actually surprisingly very efficient

➢Until the array is about 70% full, the number of probes
(places looked at in the table) is typically only about 2 or 3

➢Sophisticated mathematical analysis is required to prove
that the expected cost of inserting or looking something up
in the hash table, is O(1)

➢Even when the table is nearly full (leading to occasional long
searches), overall efficiency is usually still quite high

Maps

➢ADT map—a way of looking up
one thing based on the value
of another

○ We use a key to find a place
in the map

○ The associated value is the
information we are trying
to look up

Key Value

0

1

2 Li Li info

3 Yam Yam info

4 Chan Chan info

5 Jones Jones info

6 Taylor Taylor info

7

MAP = ASSOCIATIVE ARRAY, DICTIONARY

What is a key and what is a value?

Key Phone number

Li 11111

Yam 22111

Chan 33111

Jones 11444

Taylor 55111

Key Last Name

11111 Li

22111 Yam

33111 Chan

11444 Jones

55111 Taylor

The answer: depends on the application

Maps and Sets

➢Sometimes we just want a set
of things—objects are either in
it, or they are not in it

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

SET

Set

• A set is simply a collection of unique things: the most
significant characteristic of any set is that it does not contain
duplicates

• We can put anything we like into a set. However, in Java we
group together things of the same class (type): we could
have a set of Vehicles or a set of Animals, but not both [as
with any other collection)

Abstract Data Type: Set

Specification
Set is an Abstract Data Type which stores a collection of
unique elements* and supports the following operations:

→Contains (k) - returns True if element k is in the
collection. Returns False otherwise.

→Add (k) - adds element k to the collection

→Remove (k) - removes element k from the collection

*The order of elements in the collection is not important

Sets are optimized for
set operations:
Set A={1, 2, 3, 4} Set B={4, 3, 1, 6}

→Intersection (set A, set B): creates a new set C consisting
only of elements that are found both in A and in B:

A ∩ B = {1, 3, 4}

→Union (set A, set B): combines all elements of A and B into a
single set C (removes duplicates):

A U B = {1, 2, 3, 4, 6}

→Difference (set A, set B): creates a new set C that contains
all the elements that are in A but not in B:

A – B = {2}

Set Operations in Java: DEMO
Implemented in Java
library using a Hash Table

https://github.com/mgbarsky/cs0445-demo/blob/main/13.hashtable/SetOperations.java

Common implementations
of Map and Set ADT that use
Hash Tables
➢ Set:

○ unordered_set in C++

○ HashSet in Java

○ set in Python

➢ Map:

○ unordered_map in C++

○ HashMap in Java

○ dict in Python

Now you know that in Python:

list (array)

t = [1,2,3,4, …, n]

if 8 in t:

 print('found')

set

s = {1, 2, 3 … n}

if 8 in s:

 print('found’)

(same for dictionary)

Time O(n) Time O(1)

	Slide 1: Hash tables Collision Resolution
	Slide 2: Next to perfect
	Slide 3: Collision resolution strategies
	Slide 4: Linear probing
	Slide 5: Add with linear probing
	Slide 6: Get with linear probing: seagull
	Slide 7: Get with linear probing: cow
	Slide 8: Add with linear probing
	Slide 9: Add with linear probing
	Slide 10
	Slide 11: Problem 1 with open addressing: deletion
	Slide 12: Problem 1 with open addressing: deletion
	Slide 13: Problem 1 with open addressing: deletion
	Slide 14: Solution to the deletion problem
	Slide 15: Problem 2 with linear probing: clustering
	Slide 16: Solution 1 to clustering problem: Quadratic probing
	Slide 17: Under quadratic probing, with the following array, where will an item that hashes to 3 get placed?
	Slide 18: Problems with Quadratic probing
	Slide 19: Solution 2 to clustering problem: Double hashing
	Slide 20: Collision resolution strategies
	Slide 21: Separate chaining
	Slide 22: Separate chaining: Get
	Slide 23: Separate Chaining vs. Open Addressing
	Slide 24: ADT Map operations: performance
	Slide 25: Hash table performance
	Slide 26: Maps
	Slide 27: What is a key and what is a value?
	Slide 28: Maps and Sets
	Slide 29: Set
	Slide 30: Abstract Data Type: Set
	Slide 31: Sets are optimized for set operations:
	Slide 32: Common implementations of Map and Set ADT that use Hash Tables
	Slide 33: Now you know that in Python:

